
 1

Modeler’s Workbench User Guide

1. INTRODUCTION: WHAT IS THE WORKBENCH? .. 3

2. BACKGROUND YOU SHOULD HAVE ... 4

2.1. Accounting .. 5
2.1.1. The chart of accounts .. 5
2.1.2. Double-entry accounting with debits and credits ... 6
2.1.3. Non-cash accruals .. 10

2.2. Basics of asset-liability modeling ... 11
2.2.1. Invested asset background .. 11
2.2.2. Liability product background ... 11
2.2.3. Principle-based liability valuation .. 12

2.3. Software background .. 13
2.3.1. C# language and object-oriented design concepts .. 13

2.3.1.1 Obect-oriented design concepts ... 14
2.3.1.2 Advantages over C++ and Visual Basic ... 15

2.3.2. Object-oriented implementation of a model... 15
ContractClass .. 18
InvestmentClass .. 20
InforceBlockClass .. 21
InvPortfolioClass ... 23
ControllerClass .. 24
AsmpFileClass ... 27
CashFlowClass ... 27
InvStrategyClass .. 27
LedgerClass ... 27
ResultsDictionaryClass .. 28
RunLog .. 28
RunParmsClass .. 28
ScenarioManagerClass .. 28
TableManager ... 28

3. HOW TO USE THE WORKBENCH .. 29

3.1. The model development screens – the user interface ... 29

3.2. Understanding file types ... 33

 2

3.3. Developing your first model .. 35

3.4. Ideas and approaches for more complex models .. 51
Adding formulaic liability calculations... 51
Separating results by year of issue .. 54
Contract changes such as annuitization .. 55

4. HOW TO USE MODELS PRODUCED BY THE WORKBENCH ... 56

4.1 The top level user interface ... 56

4.2 Files used by the model ... 57
4.2.1 Input files ... 58
4.2.2 Output files .. 58
4.2.3 Table files .. 59
4.2.4 Model support files ... 59

4.3 Working with scenarios ... 61
4.3.1 Defining risks ... 61
4.3.2 Generating scenarios ... 63

4.4 Running the asset / liability simulations .. 64

4.5 Viewing the output ... 65

5. APPENDICES .. 69

Defining and using assumptions .. 69

Actuarial tables and the Table Manager .. 71

Chart of accounts and the ledger ... 72

Report writer ... 75

Risk definition files .. 76

Principle-based valuation and the inner loop .. 79
How the model controller handles inner loops ... 79
Requesting that the inner loop be included in a model run ... 81
Generating the inner loop scenario(s) .. 81
Adding margins in the inner loop assumptions ... 83
Capturing and using results of inner loop scenarios ... 84

Principle-based margins and the Representative Scenarios Method (RSM) ... 84

The source code generator .. 86

 3

Statutory reserves and BFReserveLib.dll .. 92

1. Introduction: What is the Workbench?

The Modeler’s Workbench is a software platform for developing asset-liability projection models of the
kind commonly used by actuaries. Such models are used in financial enterprises of all kinds, but
especially in insurance companies and pension funds. In recent years the use of such models has
become a staple in activities including risk management, regulatory compliance, financial reporting, and
valuation.

Comparison to other asset-liability projection models

Asset-liability models vary widely in their complexity, from simple worksheets in Microsoft Excel, to full-
blown enterprise-level systems for large institutions. The Modeler’s Workbench fills a niche between
those extremes. The Workbench provides a platform for model development with all the flexibility of a
worksheet, but with a software structure designed for dynamic asset-liability modeling like the major
enterprise modeling systems. The Workbench is an open-code platform, making it easy to change and
experiment with a model. This contrasts with enterprise platforms that are often closed-code and
burdensome to change. As a result, the Workbench is most suited to prototyping models for new
products, exploring the effect of proposed new accounting rules, alternate investment strategies, and
other possibilities. It is also useful for research into model efficiency techniques.

Because its structure is parallel to the structure of enterprise models, it can also be used for
independent validation of enterprise model results.

While the Workbench can be used to develop an enterprise model, such use requires addition of
governance and other controls that are not a part of the Workbench. In creating the Workbench the
emphasis was on modeling flexibility and open-code, characteristics that are at odds with the controls
desired in enterprise model implementations. Enterprise models generally come with lots of
(expensive) support from a large consulting organization. With the Workbench you are largely on your
own. You can add controls and governance yourself, of course, and there is at least one large insurer
that has done so with a home-grown system like the Workbench. But that company has a permanent
paid professional staff dedicated to maintenance and use of the model (instead of external consultants).

Primary output and analysis capabilities

The primary output of models developed using the Workbench is projected financial statements. Such
statements encapsulate all future financial activity including cash flows, investment returns, profitability,
and capital levels. Projections can also include activity counts and volume of business, depending on the
type of liability being modeled. A great variety of analyses are enabled by having such projections.

 4

The workbench includes a stochastic economic scenario generator, and automates the process of
running sets of stochastic scenarios and viewing the distribution of any projected result.

The workbench also includes a random number generator, so stochastic techniques can be applied to
simulation of claims, other actuarial decrements and contractholder behavior.

Importantly, any model developed using the workbench is capable of cash-flow-based valuation of
liabilities on future dates, under assumed future economic conditions. This requires “model-within-a-
model” capability, where the state of the simulation is stopped at a future valuation date, and a new
projection (or stochastic projections) for valuation purposes is done starting from that date. After the
valuation is completed, the model restarts from where it was stopped. This capability provides for
realistic projection of financial results under accounting frameworks that require cash-flow-based
valuation of liabilities, including IFRS and in some cases US statutory accounting.

Ultimate flexibility

While the Workbench is an asset-liability model platform, the liability side of the model is completely
open. Figuratively, you start with a blank sheet of paper when defining and insurance contract, a
pension plan, or any other sort of financial liability that is backed by invested assets. You must define
the records that are kept for the liability contract, the way transaction amounts are calculated, and the
way transactions are recorded for accounting purposes. A structure for such definitions is provided, but
the definitions themselves are completely open. That means that the liability could be anything
including but not limited to the following:

o Insurance contracts of any kind
o Pension liabilities, including retiree health care benefits
o Bank deposits (i.e. checking accounts, time deposits)
o Continuing care retirement community obligations
o ESOPs (Employee Stock Ownership Program liabilities for liquidation upon separation from

employment)

Asset-liability models of the kind developed using the Workbench are useful in connection with any
financial arrangement where money is collected in advance and invested in order to provide payments
of some kind in the future. Uncertainties regarding investment returns and the amount and timing of
future payments represent risks that must be managed. The Workbench can be used to develop models
that simulate those risks.

2. Background you should have

An asset-liability projection model for a financial enterprise is inherently complex. To develop such a
model using the Workbench, you need not only a deep professional background in actuarial aspects of
financial contracts and their liabilities and risks, but also in fundamentals of accounting and computer

 5

software coding. Subsections below summarize the background required in the areas of accounting,
asset / liability modeling, and software coding. Readers can skip any sections covering background they
already have. All users will, however, need to become familiar with the material in section 2.3.2 – The
Object-oriented Implementation of a Model.

2.1. Accounting

The primary output of an asset-liability model is projected financial statements, which are assembled
from projected accounting records. The model developer needs to understand both how the accounting
records are maintained and how financial statements are assembled from those records.

2.1.1. The chart of accounts

The chart of accounts is simply a list of every quantity that is to be recorded for each accounting time
period (normally each month in this context). Each quantity corresponds to a ledger account, and the
list of such accounts is called the chart of accounts.

There are five categories of ledger accounts. The table below lists the categories and gives some
examples of each:

Category Category description Example ledger accounts
Assets Cash and invested assets

Amounts owed to us
Cash on hand
Investments (bonds, stock)
Occupied real estate
Tax refunds not yet received

Liabilities Amounts owed to others Insurance claims not yet paid
Potential future insurance claims
Taxes owed but not yet paid

Income Cash taken in, change in
amounts owed to us.

Insurance premiums
Interest earned on investments
Capital gains

Disbursements Cash paid out, change in
amounts owed to others.

Insurance claims payments
Operating expenses
Taxes
Increase in value of liabilities

Capital and surplus Net worth (=Assets – Liabilities) Paid in capital
Retained earnings

Other
(not traditionally part of the
chart of accounts, but included
here as used in the Workbench)

Inventory counts, activity counts,
required disclosure items

Number of new contracts sold
Number of insurance claims
Total face amount of insurance

 6

A ledger can be envisioned as a list of account balances, that is, a list of numbers where each number
corresponds to the amount recorded in a particular account.

The line-items on financial statements are calculated based on the amounts (balances) in ledger
accounts. For example, net profit is calculated as (Total Income) minus (Total Disbursements). There is
no item in the chart of accounts for Net Profit; it is calculated based on items that do appear in the chart
of accounts.

In the Workbench, you can define your own chart of accounts. This allows flexibility to simulate any set
of accounting rules, because different sets of accounting rules sometimes define the items to be
reported in different ways.

In the Workbench, the formulas for line-items on financial statements (such as net profit) are also
defined in the chart of accounts. Instead of containing an account balance, each such item contains a
formula based on other items in the chart of accounts. This is discussed further in the Appendix.

2.1.2. Double-entry accounting with debits and credits

What are debits and credits? A debit is an addition to an account balance. A credit is a subtraction from
an account balance. A debit balance is a positive balance. A credit balance is a negative balance.

In a double-entry accounting system, every transaction is recorded by a set of debits and credits that
add to zero. As a result, if you add all balances in the chart of accounts (excluding the “Other” category),
you should always get exactly zero. That gives a simple but profound assurance that the accounts are in
balance.

So how do we produce financial statements when all the account balances always sum to zero? Let’s
work through a simple example involving one year of activity for a block of life insurance contracts.

Here is the chart of accounts, along with the balances in each account at the beginning of the year:

Account Category Acct Type Beginning Balance
Insurance premium income Income Credit 0
Investment income Income Credit 0
Death claims Disbursement Debit 0
Expenses Disbursement Debit 0
Change in liability for future claims Disbursement Debit 0
Cash and invested assets Asset Debit 1000
Liability for future claims Liability Credit (900)
Capital and surplus Capital Credit (100)

 7

Note that the balances add to zero. This occurs because of a sign convention based on the category of
each account. The asset and disbursement categories are “debit” accounts which normally have a
positive balance. The liability, income, and capital categories are “credit” accounts that normally have a
negative balance. When the balance of a “credit” account is quoted, the sign is flipped. After reflecting
this sign flipping, the beginning balances above indicate 1000 of assets, 900 of liabilities, and 100 of
capital and surplus.

Every time a transaction occurs, it is recorded by a set of debits and credits that add to zero. Let’s go
through a list of potential transactions for the year. For each transaction we will review the debits and
credits and the cumulative balances in the chart of accounts.

Transaction: Premium income received in cash

Assume premium income of $300 is received in cash. We debit cash and credit premiums for $300.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income (300) Credit (300)
Investment income Credit 0
Death claims Debit 0
Expenses Debit 0
Change in liability for future claims Debit 0
Cash and invested assets 300 Debit 1300
Liability for future claims Credit (900)
Capital and surplus Credit (100)

Transaction: Payment of expenses in cash

Assume expenses of $75 are paid in cash. We credit cash and debit expenses premiums for $75.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income Credit (300)
Investment income Credit 0
Death claims Debit 0
Expenses 75 Debit 75
Change in liability for future claims Debit 0
Cash and invested assets (75) Debit 1225
Liability for future claims Credit (900)
Capital and surplus Credit (100)

 8

Transaction: Payment of claims in cash

Assume claims of $150 are received paid in cash. We credit cash and debit claims for $150.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income Credit (300)
Investment income Credit 0
Death claims 150 Debit 150
Expenses Debit 75
Change in liability for future claims Debit 0
Cash and invested assets (150) Debit 1075
Liability for future claims Credit (900)
Capital and surplus Credit (100)

Transaction: Investment income received

Assume investment earnings of $50 are received in cash. We debit cash and credit investment income
for $50.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income Credit (300)
Investment income (50) Credit (50)
Death claims Debit 150
Expenses Debit 75
Change in liability for future claims Debit 0
Cash and invested assets 50 Debit 1125
Liability for future claims Credit (900)
Capital and surplus Credit (100)

Transaction: End of year liability valuation

A valuation at the end of the year indicates our liability for future claims has increased to $1000 from
$900 at the beginning of the year. We debit the “change in liability” and credit the liability for $100.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income Credit (300)
Investment income Credit (50)
Death claims Debit 150
Expenses Debit 75
Change in liability for future claims 100 Debit 100
Cash and invested assets Debit 1125
Liability for future claims (100) Credit (1000)
Capital and surplus Credit (100)

 9

Transaction: Closing entry for the year

At the end of the year we prepare for the beginning of next year when the balance of all income and
disbursement accounts must again be zero. This is called closing the ledger and is done by making a
balancing entry to Capital and surplus. The amount of the balancing entry is our net income for the
year. In this case the net income is positive $25. It shows up as a $25 credit to the Capital and surplus
account. Since Capital and surplus is a credit account, the sign is flipped and the $25 represents and
addition to capital and surplus.

Account Entry amount Acct Type Cumulative Balance
Insurance premium income 300 Credit 0
Investment income 50 Credit 0
Death claims (150) Debit 0
Expenses (75) Debit 0
Change in liability for future claims (100) Debit 0
Cash and invested assets Debit 1125
Liability for future claims Credit (1000)
Capital and surplus (25) Credit (125)

The financial statements for the year are easily assembled from these account balances. We use the
income and disbursement balances from before the closing entry and the balance sheet items from
after the closing entry.

Income statement

Balance sheet

 Premium income 300

Assets 1125

Investment income 50
 Total income 350

Liabilities 1000

Capital 125

Claims 150

Total liabilities and capital 1125

Expenses 75
 Increase in liabilities 100
 Total disbursements 325

 Net income 25

 10

2.1.3. Non-cash accruals

Sometimes accounting rules require the recording of income or expense items at some time other than
when cash is exchanged. To balance the entry for income or expense, an account other than cash must
be included in the chart of accounts for this purpose. Such accounts are often called accruals, and they
are either assets (used for recording income) or liabilities (used for recording disbursements).

One example of such an account is “Investment income due and accrued”. This asset account is used to
record investment income that has been earned but not yet collected in cash. For example, corporate
bonds often pay interest in semi-annual coupons, but the income needs to be recorded monthly. To
accomplish this, the following entries are made:

Account Entry amount Acct Type Cumulative Balance
In month 1:
Investment income (100) Credit (100)
Income due and accrued 100 Debit 100

In month 2:
Investment income (100) Credit (200)
Income due and accrued 100 Debit 200

In month 3:
Investment income (100) Credit (300)
Income due and accrued 100 Debit 300

Similar entries for months 4, 5, and 6 not shown

In month 6, to record receipt of cash:
Cash 600 Debit 600
Income due and accrued (600) Credit 0
Investment income None Credit (600)

Note that the entry made when cash is received in month 6 does not involve investment income. It
simply records conversion of the accrual asset “income due and accrued” into a cash asset.

As an aside, the value of “income due and accrued” is typically included as part of the value of invested
assets when computing investment yield rates from financial statements. That reflects the idea that
accrual assets are real assets.

Such accruals are common in the context of asset-liability models. The modeler needs to be familiar
with those to be used in any model to be developed using the workbench. While the workbench
provides accounting for assets, the modeler is responsible for defining all accruals and cash transactions
for liabilities and expenses.

 11

2.2. Basics of asset-liability modeling

It should go without saying that the user of the Workbench needs to understand what an asset/liability
model is, how it works, and why it is useful. Such basic background is beyond the scope of this user
guide.

Beyond the basics, the user needs to understand some specifics about invested assets, including
accounting for them, and about liability product design and administration. Since the Workbench
includes features that facilitate principle-based liability valuation, the user needs to understand what is
meant by principle-based valuation of liabilities. An overview of the required asset-liability modeling
background is provided in the subsections below.

2.2.1. Invested asset background

The current version of the Workbench includes only basic types of invested assets: Cash, Bonds,
Mortgages, and Stock (equities). By default, the accounting for these assets follows US statutory rules
for insurance companies. That means that fixed income assets (cash, bonds and mortgages) are valued
at amortized cost and stocks are valued at market. The user is assumed to understand the difference
between amortized cost valuation and market valuation for fixed income investments, and the risks
posed by each type of invested asset.

The Workbench provides market values for fixed income invested assets. If the user wishes to use an
accounting framework where fixed income assets are held at market value, it is the user’s responsibility
to appropriately create financial statements from the available accounting information. The appendix
covering the report writer provides details as to how this can be done.

2.2.2. Liability product background

The Workbench provides complete flexibility to model any liability based on the contract with a
customer. Doing so requires the user to have a deep understanding of the contract to be modeled. In
particular, the user needs to understand not only how contract values are calculated, but also the details
of the recordkeeping process involved in ongoing administration of the contract.

The user must define:

• The list of data items that are maintained for each contract (often called the master record)

 12

• The list of possible transactions that can occur in connection with a contract. For a life
insurance contract this would include premium payment, death claims, contract surrender,
payment of expenses for sales and administration, and others. For each kind of transaction the
user must define:

o The calculation of any monetary amounts
o The accounting debits and credits to be made when any payment (or accrual of future

payment) is to be recorded.
o The updates to the contract master record resulting from the transaction

• The list of contract liabilities to be valued at the end of each period. For each liability associated
with a contract:

o The calculation of the liability value (tools are provided for principle-based valuation)
o The accounting debits and credits to be made to record changes in the liability value.

The Workbench provides a structure in which all of these definitions can be specified. With those
specifications, most of the computer code for a model can be automatically generated by the
Workbench. The calculations of monetary amounts, however, cannot be automatically generated and
must be coded by the user.

Sample contract definitions will be made available for some products. Nevertheless, the burden is on
the user to completely specify all of these aspects of any product for which a model is to be developed.

Many life insurance actuaries have prepared “asset share” pricing worksheets using Microsoft Excel.
The amount of effort needed to prepare an asset share worksheet calculation is comparable to the
amount of effort needed to define a product within the Workbench. But the end result is much
different. With the Workbench you get a fully integrated and dynamic asset-liability model with ability
to handle whole blocks of business at once. With a worksheet you get something that looks at one
contract at a time, usually in a static economic environment.

2.2.3. Principle-based liability valuation

While any appropriate valuation is based on some principles, the term “principle-based valuation” has
taken on a specific meaning in the USA in the 21st century. Essentially, a principle-based valuation is one
where the value of a liability is set equal to the value of the assets required in order to pay it off, and
includes a margin that is related to the size of the risk.

The principle here is that the liability is valued with reference to the value of the assets. Since assets can
be valued in different ways (e.g. amortized cost vs. market) this means that a principle-based valuation
can be done in different ways.

Mechanically, a principle-based valuation is calculated as the present value of future liability cash flows,
discounted at the projected future rate of return on the assets, where the asset return is measured

 13

under a specified accounting regime. The Workbench automates this calculation, and gives the user
control over the way the discount rate is calculated.

In US statutory accounting, the asset return is measured with fixed income investments valued at
amortized cost. In IFRS, the asset return is measured with all assets valued at market. Different asset
valuations lead to different investment returns and therefore different discount rates and different
liability valuations. The principle is that the assets and liabilities are valued consistently together as a
package. The value of the liability means nothing without comparison to the value assigned to the
assets.

As mentioned earlier, the Workbench automates principle-based valuations. On any valuation date in a
scenario, the model pauses and “clones” itself. The cloned copy is used to project cash flows and
investment returns from that date forward for valuation purposes, using a scenario or set of scenarios
whose future path is determined without foreknowledge of the scenario being used in the original
model that was cloned. When the valuation is complete, the original model records the results, discards
the “cloned” model, and resumes its simulation from where it paused.

Obviously principle-based valuation is very time-consuming so it is only done on user request.

The Workbench’s open-code framework exposes the calculation of projected investment returns to the
user, so you can change the way discount rates are calculated based on different asset valuations. Also,
the amount of margin to be included in principle-based reserves is the subject of much debate and
research. The Workbench’s open-code approach allows the user flexibility to define the margin. This is
discussed further in an appendix.

2.3. Software background

The Workbench is an open-code model development platform built on Microsoft .NET and the C#
language. While the Workbench provides most of the modules and code for a completed model, the
user must write some of the code. Doing so requires an understanding of the C# language and object-
oriented design concepts as they are used in this kind of model.

2.3.1. C# language and object-oriented design concepts

The C# language was developed by Microsoft in connection with the .NET framework for software
development. It is very similar to other general-purpose languages such as C++ and Visual Basic, so
someone familiar with either of those languages will find it easy to learn C#.

A complete exposition of the C# language is beyond the scope of this user guide. Here we briefly
summarize the object-oriented design concepts that are embedded in the language, and the advantages
of C# over C++ and Visual Basic.

 14

2.3.1.1 Obect-oriented design concepts

General-purpose programming languages all allow the definition of variables that are integers, floating
point numbers, alphanumeric characters, and other simple types. They also allow the definition of
functions (a formula that returns a variable) and subroutines (procedures that carry out many steps with
a single call).

Object-oriented languages go beyond that to allow the definition of more abstract items called object
classes. In doing so, such languages have syntax to convey the concepts of encapsulation, inheritance,
and polymorphism.

Encapsulation refers to the idea of packaging (or encapsulating) a group of variables, functions, and
subroutines together. The packaged items define an object class. In Visual Basic this is called a class
module. In C++ and C# it is simply called a class. The developer can then declare variables that
represent items of that class, where every such declared item has its own internal copy of the variables,
functions, and subroutines that define the class. The declared item is referred to as an instance of the
class.

An insurance contract is one example of an object class that can be encapsulated this way. The variables
could be the premium paid, the amount of coverage, the dates coverage begins and ends, and so on.
The functions and subroutines can provide things like premium rates for fractional periods or liability for
coverage past a particular date. In a model, each insurance contract is an object, that is, an
encapsulated item that has specific values for all the variables in the class. Each such item is called an
instance of the class.

Inheritance refers to the idea of expanding the definition of an existing class by adding more variables,
functions, and subroutines. A new class can be defined starting from, or inheriting, everything in an
existing class, without the need to redefine all those contents. For example, when a new insurance
contract is developed which simply adds an additional kind of coverage, a class for this new contract can
be defined by inheriting from an existing contract definition that does not refer to that additional kind of
coverage.

Polymorphism refers to the idea of defining a class in an abstract way, so that there can be more than
one kind of thing in the class. To implement polymorphism, one must be able to define names of the
functions and subroutines in a class (and their arguments) without defining how those functions and
subroutines are implemented. This kind of definition is called an interface, and one can then implement

 15

more than one class based on that interface by implementing the named functions and subroutines in
more than one way.

For example, the interface to an insurance contract may define variables like the date of issue and
amount of insurance which are common to all contracts, and name a subroutine called
simulateOneMonth(). One can then implement that subroutine in many ways, one for each kind of
insurance contract to be modeled. Each kind of contract is defined by a class that implements the
interface. The advantage of polymorphism is that this allows the developer to process insurance
contracts as abstract items. The abstraction happens when the code declares an instance of an
insurance contract named myContract, and then calls myContract.simulateOneMonth(). Even though
the call to simulateOneMonth()does not specify what kind of contract myContract is, the appropriate
version of simulateOneMonth() will be called automatically based on the kind of contract. In the
Workbench, this vastly simplifies the coding used to process lists of dissimilar contracts.

2.3.1.2 Advantages over C++ and Visual Basic

For actuarial work, C# has advantages over both C++ and Visual Basic.

Visual Basic does not fully implement the object-oriented design concepts listed above. In particular,
Visual Basic does not implement inheritance, and the only way to imitate polymorphism involves syntax
that is very verbose and duplicative. Since inheritance and polymorphism play important parts in the
implementation of a model, a language that fully implements these concepts is preferred.

C++ was developed with the purpose of fully implementing the object-oriented design concepts listed
above, and C++ is a very powerful language. However, some of the power of C++ comes at the cost of
adding work for the developer. In particular, the developer must write code to manage memory. When
debugging and testing software, problems associated with memory management are often the toughest
to track down. C# eliminates this issue by relieving the developer of the need to write code that
manages memory. The .NET framework includes an automated memory manager like the one
associated with Visual Basic1.

To summarize, the developer writing code in C# .NET avoids the time-consuming obligation to write
memory management code as in C++, while gaining the object-oriented design capability that is missing
from Visual Basic.

2.3.2. Object-oriented implementation of a model

1 The trade-off between the use of an automated memory manager and the ability to completely control memory
management is hotly debated among software developers. The choice of C# for the Workbench, which uses an
automated memory manager, is based on the expectation that most users will be actuaries that prefer to focus on
model processing and have little interest or technical background in optimizing memory management. The
opportunity to avoid spending time on memory management has significant value for such users.

 16

This section describes the object classes included in a model developed using the Workbench, and
provides an overview of how they interact. Keep in mind that most of the code used to implement
these classes is either included as pre-built program modules or is auto-generated based on the contract
definitions you provide. In many models, the only code you must write is that which calculates the
payments and other monetary amounts associated with the contracts you define.

The classes fall into two general categories – those that carry out the simulation and those that serve to
provide input data or record results. The diagram below uses rectangles for the simulation processing
and ovals for data management. As shown in the diagram, the model controller contains all the other
items and orchestrates their behavior.

Model Controller

Scenario
Manager

Assumptions Table
Manager

Cash
flow

Main
Ledger

Investment
Ledger

Inforce Block
(list of contracts)

Investment Portfolio
(list of investments)

Contract Investment

Model
Controller

(Inner loop)

Results
Dictionary

 17

Classes involved in the simulation

The classes involved in the simulation work at three different levels of abstraction.

• The lowest level is the individual contract (e.g. an insurance contract) or individual investment
(e.g. a bond). The classes that represent contracts and investments are each polymorphic,
meaning there can be many kinds of contracts and many kinds of investments in a model.

• The next level is a list or collection of contracts or investments. A list of investments is called a
portfolio, and a list of contracts is called an “inforce”, a term borrowed from insurance
terminology. The object that represents a portfolio or an inforce can be used to treat all of its
content as a single entity, thereby abstracting a long list of objects into a single object.

• The highest level of abstraction is the model controller. The controller manages the entire
simulation process, that is, the entire business enterprise. The controller contains one or more
inforces and one or more investment portfolios, along with the objects that provide input data
and record the results. At this level of abstraction, the code for virtually any asset-liability
model with just one inforce and one portfolio is the same. This makes it possible to auto-
generate the code for most simple models. The algorithm for running the model for one
economic scenario can be summarized as follows:

1. Perform an initial valuation of all inforces and portfolios to fill in the starting balance sheet.

2. Start a loop through all future time periods in the simulation. For each time period:
a. Simulate and record all liability transactions (process all the inforces)
b. Capture the generated cash flow and pass it to the investment portfolios
c. Simulate and record all investment portfolio transactions
d. Perform an end-of-period valuation of all inforces and portfolios2
e. Simulate any desired end-of-period transactions such as taxes, capital transfers, etc.
f. Save a snapshot of the accounting records as of the end of the period.

3. At the end of the last period, save an output file containing all the end-of-period snapshots of

accounting records.

When the model is run for a set of stochastic scenarios, the above process is carried out separately for
each scenario. On machines with multiple processors, one scenario at a time is assigned to each
processor.

Here is a summary of the classes that carry out the simulation. This summary is intended only to help
the user understand the basic working of each class. Some less important parts are not described here.
Detailed software documentation is provided outside this user guide.

2 The end-of-period valuation for liabilities can be either calculated by user-specified formula or it can involve a
principle-based valuation of liabilities. The latter involves a model-within-a-model to calculate the discounted
present value of cash flows projected forward from the valuation date. An appendix covers principle-based
valuation.

 18

ContractClass

Description: This is the base class for all liability-side contracts to be simulated by a model. In the
insurance context, this represents a type of insurance contract. Classes are derived from ContractClass
to represent different types of contracts and are named by pre-pending a name for the type of contract,
as in TermLifeInsuranceContractClass. The properties and methods below are common to all kinds of
ContractClass and define the interface IContractClass. Each specific kind of contract has additional
properties and methods that are defined by the model developer using the contract definition input
dialogs.

Properties:

• InforceBlock

A reference to the list of inforce contracts in which this contract is included. Since the inforce
block has a reference to the assumption file, this reference can be used when obtaining the
values of assumptions.

• Controller

A reference to the model controller for the model in which this contract is included.

• ScenarioManager

A reference to the scenario manager for the model in which this contract is included.

Methods:

• void ProcessMonth(int aDate)

Carries out all simulation processing for one month. Since this class is polymorphic, the actual
processing done here can be different for every different kind of ContractClass. There is a
pattern that is followed, however. The pattern has three main steps:

1. Calculate all the monetary amounts that are involved in all transactions for the month.
2. For each transaction, record the transactions in the ledger using debits and credits to

the appropriate accounts. The amount of each debit or credit is based on the
calculations done in step 1.

3. For each transaction, update the master record (the properties of the contract) to
reflect the transaction.

 19

Most of the code for this is auto-generated based on user-supplied definitions in the .ctype file.
However, the formulas used in step 1 above are coded by the user.

• void PerformValuation(int aDate)

Records any required formulaic valuation amounts in the appropriate balance sheet accounts.
This method is called at the end of the month, after all transactions for the month have been
simulated. The calculation of the valuation amounts to be recorded here actually takes place in
step 1 of ProcessMonth(), described above.

This valuation processing is separate from the principle-based valuation, which is carried out in
the ControllerClass.

• void SetLgrSeg()

Sets the ledger segment number in which all transactions for this contract will be recorded. By
default segment 1 is used, but the model developer can change this so that different kinds of
contracts are recorded in different ledger segments.

• double SalesMeasure(int aDate)

When a model simulates future new contracts (i.e. sales), one of the input assumptions will be
the amount of sales in each future month. The amount of sales might be in a unit of measure
other than the number of contracts (e.g. total insurance premiums), so this method provides a
way to translate the amount of sales into a number of contracts. For example, if the sales are
expressed as total insurance premium sold, this method would return the per-contract amount
of premium. The number of contracts sold is always the assumed sales amount divided by this
value.

• IContractClass Clone()

This method makes a copy of this object in the computer’s memory. It is used when cloning a
model-within-a-model for purposes of principle-based valuations on future dates.

 20

InvestmentClass

Description: This is the base class for all investments (other than cash) to be simulated by a model.
Classes are derived from InvestmentClass to represent different types of investments such as bonds and
stocks. The properties and methods below are common to all kinds of InvestmentClass and define the
interface IInvestment. Each specific kind of investment has additional properties and methods.

In most cases, the user will not need to do any coding for investments because code for basic kinds of
investments is already provided.

Properties:

• Portfolio A reference to the portfolio in which this investment is held
• LedgerSegment The number of the ledger segment where transactions are recorded
• TypeCode A value used to indicate what kind of investment this is
• ID A unique identifier string for this investment
• PurchasePrice
• PurchaseDate
• MarketValue(aDate)
• StatementValue(aDate)
• TaxValue(aDate)
• BookValue(aDate)
• BookYield
• IsFixedIncome True or false. Indicates whether this investment is a fixed income type.

Methods:

• ProcessPurchase(aDate, aTiming)

Simulates the transaction of purchasing the investment by paying cash from the portfolio and
adding the investment to the portfolio.

• ProcessMonth(aDate)

Simulates all transactions associated with this investment for one month. The transactions are
simulated using the same basic 3-step process as is used to simulate contract transactions.

• PerformValuation(aDate)

Records the market value of the investment in the ledger.

• Clone()

This method makes a copy of this object in the computer’s memory. It is used when cloning a
model-within-a-model for purposes of principle-based valuations on future dates.

 21

InforceBlockClass

Description: This is the base class for all blocks of liability contracts to be simulated by a model. An
object of this class is essentially a list of similar contracts such as life insurance or annuities. Classes are
derived from this class to represent blocks of different types of contracts and are named by pre-pending
a name for the type of contract, as in TermLifeInsuranceInforceBlockClass. The properties and methods
below are common to all kinds of InforceClass and define the interface IInforceBlockClass. Each specific
kind of inforce may have additional properties and methods that are defined by the model developer.

In many (but not all) cases, the user will not need to do any coding for a class derived from
InforceBlockClass because generic code for handling a list of contracts as a single object can be auto-
generated by the workbench. Additional coding is needed only when the entire group of contracts
shares some property or characteristic that is best handled once in the aggregate rather than separately
for each contract.

Properties:

• Contracts An object containing the list of contracts included in this InforceBlock

• References to other objects in the model but outside this class:
o Assumptions A reference to the contents of an assumption file
o Controller A reference to the controller of this model
o Lgr A reference to the Ledger where transactions are recorded
o ScenarioManager A reference to the scenario manager of this model

• References to objects constructed and used internally by this class:

o AuditFileWriter A utility that writes information to an audit file in .csv form
o CashFlow An object that accumulates cash flow from all contracts at the

beginning, middle, and end of the month
o ContractFactories A utility that creates new contracts in the computer’s memory
o SalesMix A list that defines the kind of new contracts to be created to

simulate new sales

• Range of ledger segments used by this InforceBlock
o FirstLgrSeg
o NumLgrSegs

• State variables stored once for the block rather than for each contract

o CumulativeInflationFactor A cumulative inflation factor.

 22

Methods:

The three methods AddNewSales(aDate), ProcessMonth(aDate), and PerformValuation(aDate) handle
the bulk of the model simulation, with each carrying out its named function for the entire list of
contracts in the block. The code for these methods can be auto-generated in many cases, based on the
definition of the contract. Other methods included in this class are utilities that often do not depend on
the type of contracts in the block.

• Methods central to the simulation:
o AddNewSales(aDate) Adds new contracts to the list of those in this block
o PerformValuation(aDate) Carries out a period-end valuation3
o ProcessMonth(aDate) Simulates transactions for all contracts for one month
o Clone() Creates a cloned copy of this inforce block. It is used

when cloning a model-within-a-model for purposes of principle-based valuations on
future dates.

• Methods to read and write .csv files containing the list of contracts:

o ReadFromCsv(filename)
o WriteToCsv(filename)

• Methods to handle an audit file used to save interim results on request

o OpenAuditFile(filename)
o CloseAuditFile()

• Methods used to record information in the ledger

o Debit(accountNum, segmentNum, amount)
o Credit(accountNum, segmentNum, amount)
o SetBalance(accountNum, segmentNum, amount)

• Method used to retrieve assumptions

o GetAsmpValue(aDate, assumptionNumber)

3 The period-end valuation carried out here is a formulaic valuation, not the principle-based valuation that requires
cloning the entire model. The formulaic valuation is carried out in three steps. Two ledger accounts are involved:
a balance sheet account for the liability and an income statement account for the change in liability. The three
steps are: 1) Capture the old valuation amount (liability account balance before valuation update) and zero out
the liability account. 2) Loop through all contracts in the inforce block, retrieve the value of each one and
accumulate the total in the liability account. 3) Determine the change in account balance (new total minus the old
amount captured in step 1) and make a ledger entry for the change in liability. This ledger entry balances the net
effect of steps 1 and 2. All of the code for these steps is auto-generated by the Workbench except the formula for
the valuation of a single contract.

 23

InvPortfolioClass

Description: This is the base class for all investment portfolios to be simulated by a model. Typically
there is just one portfolio in a model, but classes can be derived from InvPortfolioClass to represent
different types of investment portfolios. The properties and methods below are common to all kinds of
Portfolios and define the interface IInvPortfolioClass.

In most cases, the user will not need to do any coding for investments because code for basic kinds of
investments is already provided and is sufficient.

Properties:

• Investments

The list of investments included in this portfolio.

• Ledger

A reference to the ledger in which activity for this portfolio is recorded.

• ScenarioManager

A reference to the scenario manager for the model in which this portfolio is included.

• Strategy

A reference to an object containing parameters of an investment strategy.

Methods:

• ProcessMonth(CashFlowClass cf, int aDate)

Simulates all transactions for one month for this portfolio. Processing involves adding the
amount of cash flow given as the first argument, simulating all transactions on investments
already in the portfolio, and then buying and selling investments based on a strategy.

• PerformValuation(int aDate)

Records the market value of the portfolio in the ledger. Note that book value is not updated
here because it is normally updated as part of normal transaction processing in ProcessMonth().

• Clone()

This method makes a copy of this object in the computer’s memory. It is used when cloning a
model-within-a-model for purposes of principle-based valuations on future dates.

 24

ControllerClass

Description: This is the object that encapsulates the entire model, and which works at the highest level
of abstraction. The controller contains all of the objects that represent parts of a model and
orchestrates their activity to carry out the asset / liability projection.

The power of this level of abstraction is illustrated by the algorithm below for running the model for one
economic scenario. This algorithm is completely generic and can be used without modification in a
great many models:

1. Perform an initial valuation of all inforces and portfolios to fill in the starting balance sheet.

2. Start a loop through all future time periods in the simulation. For each time period:
a. Simulate and record all liability transactions (process all the inforces)
b. Capture the generated cash flow and pass it to the investment portfolios
c. Simulate and record all investment portfolio transactions
d. Perform an end-of-period valuation of all inforces and portfolios4
e. Simulate any desired end-of-period corporate-level transactions such as taxes, capital

transfers, etc.
f. Save a snapshot of the accounting records as of the end of the period.

3. At the end of the last period, save an output file containing all the end-of-period snapshots of

accounting records.

Different models differ mainly in which inforces and portfolios are included, and which end-of period
transactions (step 2e above) are simulated. The generic ControllerClass that is provided can easily be
modified to implement such differences.

Properties:

• AsmpFile Provides access to assumptions
• Inforce Provides interface to an InforceBlock
• InvPortfolio Provides the interface to an InvPortfolio
• IsOuterLoopModel True or False, set to False for controllers cloned for inner loops5

4 The end-of-period valuation for liabilities can be either calculated by user-specified formula or it can involve a
principle-based valuation of liabilities. The latter involves a model-within-a-model to calculate the discounted
present value of cash flows projected forward from the valuation date. An appendix covers principle-based
valuation.
5 The models cloned for inner loops (model-within-a-model) use exactly the same program code as the models
from which they were cloned. However, they are prevented from cloning their own inner loops by setting this
property to false. This property can also be used in calculations, for example, to modify the assumptions used in
inner loop models to add explicit margins for valuation purposes.

 25

• ModelName A character string containing the name of the model
• ModelResults A ResultsDictionaryClass object used to capture specific named results
• RunParms A set of runtime parameters such as file names, start date, etc.
• ScenarioManager Manages access to scenarios of economic and other data
• UseInnerLoop True or false, indicates whether this controller carries out principle-

based valuations in an inner loop.

Note that while every model controller has a ledger inside it, the ledger is not accessible from outside so
it is not listed here as a property of the controller.

Also note that while every model also includes a RunLog and a TableManager, these items are
independent of the model controller so they are not properties of the controller. In object-oriented
terminology, they are “static”.

Methods:

The main purpose of a model controller is to run a single scenario over time. When that scenario
involves principles-based valuations on future dates, the model controller must clone itself for each
scenario involved in that valuation, thereby managing potentially a large number of inner-loop models.

• RunScenario()

This is the routine that runs a scenario. Before this is called, SetupObjects() and SetupScenario()
must have been called. First steps in running a scenario include reading in the initial list of
contracts in force and the starting investment portfolio, then performing an initial valuation of
each to fill in the starting balance sheet. After that, the simulation loop through future calendar
periods begins.

• RunInnerLoop()

This is called from RunScenario() when needed to run the inner loop scenarios required for a
principle-based valuation on a future date.

• SetupObjects()

This initializes all of the objects in the controller that are not scenario-specific. These objects
only need to be set up once at the start of a run, not once for each scenario. The objects set up
here include the RunLog, Table Manager, Assumption file, and the chart of accounts and list of
ledger segments.

• SetupScenario(scenarioID)

 26

This initializes the state of the controller to the start of a scenario run. This requires
initialization of objects that are scenario-specific or change state over the course of a scenario.
The objects set up here include setting the state (current scenario) of the Scenario Manager,
creation of a new blank ledger, and reading the starting investment portfolio and starting
inforce from input files.

There are many additional methods inside a Controller in order to provide calculation and processing
support. Complete software documentation is provided elsewhere.

 27

Classes used primarily for data management

The following objects are included in a model, many as public or private properties of the model
controller. Each is implemented as a separate class in its own right, encapsulating all of the data and
processing needed to carry out its part in the model simulation. Full documentation of each of these
classes is voluminous so all that is included here is a general description of each one. Separate software
documentation provides more details.

AsmpFileClass
Description: This class handles access to assumptions. It provides methods to read and write a file of
assumptions and retrieve assumption values by date and assumption code. Actuarial tables that are
used as assumptions are managed separately by the TableManager, however the assumption file may
define which table is to be retrieved by the TableManager for a specific purpose.

CashFlowClass
Description: This class is used to accumulate total cash flow for a month in three parts; beginning of
month, middle of month, and end of month. Cash flow is generated during monthly processing of each
contract in an InforceBlock. The Controller passes the accumulated cash flow to an Investment Portfolio
(as an argument to the ProcessMonth() method) for simulation of investment processing.

InvStrategyClass
Description: This class provides data to define a simple investment strategy for a portfolio consisting of
cash, bonds, and stocks. Cash management is defined by a maximum percentage of the total portfolio
to hold in cash, the maximum percentage to borrow before forcing sales to generate cash, and the
borrowing spread. Stock management is defined simply by a minimum and maximum percentage of the
portfolio to hold in stocks. Fixed income portfolio management can be either to purchase specified
items or to maintain a target duration. When purchasing specified items, a list of items specifies the
maturity, credit quality, and portion of available cash to purchase each item in the list.

LedgerClass
Description: The ledger contains the accounting records that form the primary output of any model.
One can visualize the data in the ledger as a three-dimensional array of account balances.

One dimension corresponds to the chart of accounts, that is, the list of accounts for which balances are
stored in the ledger. The chart of accounts is described in detail in an Appendix.

The second dimension is ledger “segment”. A ledger “segment” is a part of the business for which
results are to be recorded separately. One must sum across all ledger segments to get the total
enterprise balance in any account in the chart of accounts. For many models there is just one ledger
segment.

The third dimension is calendar date. A ledger implemented as an object of the LedgerClass contains
snapshots of the state of all ledger account balances as of each date during the time period of a model

 28

run. Normally that includes the model start date and each future month that is modeled. Each
snapshot can be visualized as a page in a book.

ResultsDictionaryClass
Description: This is a storage facility for results from a set of scenarios, such as those that are used for
stochastic principle-based valuation on a future date within a model. This is a two-level dictionary. The
first level lookup is by scenario name; there is a separate dictionary of results for each scenario. The
second-level lookup, within each scenario-specific dictionary, allows items can be stored and retrieved
by name. A stored item can be of any type, including for example the array of monthly cash flows to be
used when calculating a scenario present value in a principle-based valuation. The monthly cash flows
and discount rates needed for principle-based valuation are automatically stored for Workbench models
that perform such valuations on future dates. The user can define additional items to be stored in this
dictionary and use them in any desired way.

RunLog
Description: This is simply a list of one-line text messages to indicate progress during model processing,
such as the starting or completion of one processing step. If errors occur, the intent is that they be
caught and written to the log. Each model contains just one RunLog, and it is generally cleared at the
start of each model run.

RunParmsClass
Description: This is a list of “runtime parameters” that define the scenario or set of scenarios to be run.
Example runtime parameters include the name of the input data files containing all contracts in force,
the name for the output ledger file, the model start date, and so on. The user can define the names of
runtime parameters and how they are used. A standard set of parameters is provided to start from.

ScenarioManagerClass
Description: The Scenario Manager is used to manage the economic scenarios used by the model. All
access to scenario data is provided by the Scenario Manager. When principle-based valuation is carried
out on a future date using stochastic or deterministic scenarios, the Scenario Manager generates the
scenarios to be used for valuation starting from conditions on the valuation date, and keeps valuation
scenarios separate from the scenario in use for the outer loop.

TableManager
Description: The Table Manager provides speedy access to values from actuarial tables. Every model
uses a folder containing actuarial tables in permanent (disk) storage. The Table Manager reads tables
into memory on first request and provides fast access to table values thereafter. The Table Manager in
the WorkBench provides the same capabilities as the TableManager add-in to Excel which has been used
by many actuaries. Each model contains just one TableManager.

 29

3. How to use the Workbench

3.1. The model development screens – the user interface

When the Workbench starts up, it displays a main window with multiple parts. This section explains
each part and its purpose.

Window title bar

The title bar displays the path of the project file for the model currently being developed.

Main menu and toolbar

The menu lists many of the commands the user can give while developing a model.

• File menu
o New project… Creates a new project. The user is asked to specify the project folder.

The folder is created and several files needed to run a model are copied into the folder.
o Open project… Allows the user to specify a project file to open.
o Close project... Closes the currently active project.

Main menu and toolbar

Project contents

Assumptions list

File editing tabs

Contract details

Ledger accounts Message area

Window title bar

 30

o Add file to project… Allows the user to specify a file to be added to the project. The
chosen file will be copied into the project folder and added to the list of project
contents in the top left frame. This can be useful for copying files from other projects
into the current project.

o Remove file from project… Allows the user to specify a file to be removed from the
project.

o Create Visual Studio project… Allows the user to create a project file for use by Visual
Studio. The file will have the same name as the Workbench project file, but the
extension .csproj. The file will be created in the project folder. Be aware that after the
file is created, there is no connection between Visual Studio and the Workbench. Any
changes made in Visual Studio (other than source code changes to existing files) will not
be reflected in the Workbench project.

o Exit… Closes the Workbench.
• Model Assembly

o Create data files
 Runtime parameters
 Assumptions

o Generate code…Brings up a dialog allowing the user to specify which parts of the model
code to generate. A full discussion of the code generator appears in a dedicated
appendix to this User Guide.

o Build… Compiles all the source code to create an executable (*.exe) file. When done, a
popup window indicates either success or errors were found. If errors were found, they
are listed in the messages area at the bottom of the Workbench screen. Clicking on an
error in that list can bring up the source code with the cursor positioned at the spot of
the error.

o Run… Runs the model that has been built (the *.exe file in the project folder).
• Utilities

o Update libraries… Copies several .dll files from the Workbench to the project folder.
This can be useful when a new version of the Workbench is created with upgrades (or
bug fixes) to some of the underlying model functionality.

o View calculation dependencies… This is only active when the current file editing tab
contains source code for a *ContractClass.cs file. The user must edit the formulas used
to calculate some variables in such a file. Each calculated variable depends on other
variables, so there are always dependencies among variables. Circular dependencies
can be created by mistake. This utility helps spot them.

o Other items may be added to the Utilities menu in later versions of the Workbench.
• Help

o About: Provides copyright, version number, and license information about the
Workbench software.

o Contents: Provides detailed software documentation.

 31

The toolbar provides quick access to several of the menu commands and adds a few, including the
editing commands Undo, Redo, Cut, Copy, and Paste.

Project Contents

This area on the top left of the Workbench lists all of the files used in the current project. The files are
grouped in categories:

• Contract types Each file defines a type of contract
• Assumption groups Each file defines a group of assumptions
• Runtime parameters Defines the list of filenames and other parameters that set up a run
• Ledger definition Defines the list of accounts and segments in the ledgers
• Reports Each file defines a report to be generated from a ledger
• Program code Each file contains C# program code. Many of the file names are

standardized and contain the project name or the name of a contract type. But you can add any
others you wish.

To create a new file in any category, right-click on the category name. You will not be able to create
new files under “Runtime parameters” or “Ledger definition” because the Workbench will not use
additional files in those categories.

To take an action with any file, click on the file name. This will bring up a popup menu allowing you to
Open, Save, Close, Rename, or Delete the file. Of course the file must already be open before you can
save or close it.

File editing tabs

This large area in the center of the Workbench is where you modify the contents of the project files.
You can have several files open at once; there is a tab at the top of the area for each file that is open. To
switch to a different file, click on its tab. To close a file, click on the small “x” that appears on its tab. To
save a file, use the File | Save menu option or click on the save icon in the toolbar.

Each type of file has its own editor that is tailored to the type of data in the file. Computer source code
files (*.cs) use a text editor with special features common to many editors of that sort, including the
availability of Ctrl-F as a shortcut key for “Find” to locate specific text in the file.

Contract details

 This area on the top right of the Workbench lists the names of the items defined by the user in each
contract type that has been defined. This is a useful reference when writing code that uses these
names.

There are three categories of names that the user defines for each contract:

 32

• Fields The information items on the master record for the contract
• Functions Items that must be calculated each month to process transactions
• Transactions Transactions that can occur such as Premiums or Claims

When you have the source code for a *ContractClass.cs file open in the editing tab, you can click on any
of the names in the contract details list and the cursor will be moved to the place in the source code
where that item is declared. For Functions, this will be at the code for the calcXXXX() function, where
XXXX is the name of the calculated item. For Transactions, this will be at the processXXXX() method
where XXXX is the name of the transaction.

Assumptions list

This area on the bottom left of the Workbench lists the names of all the assumptions that have been
defined in the Assumption Groups files in this project.

When you have the source code for a *ContractClass.cs file open in the editing tab and you want to
enter the code to retrieve an assumption value, double click on the name of the assumption to be
retrieved and the appropriate code will be inserted at the cursor position. For example, if you double
click on the assumption name “ExpenseRate”, the following code will be inserted:

block.GetAsmpValue(aDate, A.ExpenseRate)

Message area

This area on the bottom center of the Workbench has two tabs, “Notes” and “Compiler messages”.

The “Notes” tab is a free-form text area for the user to write notes or reminders to themselves while
working on the workbench.

The “Compiler messages” tab is filled by the compiler when the user issues the Build command. If the
compiler finds errors in the source code, they will be listed here. Double-clicking on a listed error will
take you to the spot in the source code where that error occurred.

Ledger accounts list

This area on the bottom right of the Workbench lists the names of all the ledger accounts and ledger
segments used in the model. This is a useful reference both when editing a contract definition (where
the accounts used to record each transaction are specified) and when editing source code that needs to
retrieve or set an account balance. When editing source code on the editor tab, one can double click on
a name in the ledger accounts list and the appropriately prefixed name corresponding to the account
number will be entered into the source code.

 There is a dedicated appendix in this user guide to explain the chart of accounts and the means
available to define and change it.

 33

3.2. Understanding file types

Several different filename extensions are used by the Workbench to identify different types of files. The
table below summarizes the filename extensions in use. All files are stored in XML format unless
otherwise indicated.

Filename
extension

Usage

Description

Workbench
Model Design

Model
Input

Model
Output

.af X Assumption file. Contains all assumption values for a
model run.

.asgrp

X

Assumption group. This defines a list of assumptions
(not the values of the assumptions) that are grouped
under one heading. Each model normally contains
several assumption groups.

.cs X C# source code. Each model contains several source
code files.

.csv

 X X

Comma-separated values file. Used for compatability
with Microsoft Excel and other third party software.
Can contain any data laid out in rows and columns. The
file name should indicate the content.

.ctype

X

Contract type. This file contains all of the definitions
provided by the user regarding a single type of contract.
Such definitions include the data for the master record,
the list of amounts to be calculated for each time
period, the transactions to simulate, and the ledger
entries and master record updates associated with each
transaction. This data is used by the Workbench to
auto-generate most of the code for simulating a
contract in a model. The main task left for the user is to
define the formulas for the list of amounts to be
calculated for each time period.

.inf X Inforce. Contains a list of contract master records.

.inv X Investment portfolio. Contains a list of investments
and other information about a portfolio.

.invst X Investment strategy. Contains information that defines
an investment strategy.

.lgract

X X

Ledger chart of accounts. Defines a chart of accounts
for a ledger. Each model has two of these,
MainLgrAccts.lgract for the main ledger and
InvLgrAccts.lgract for the investment portfolio ledger.

.lgrseg

X X

Ledger segments. Defines a list of subdivisions or
segments in a ledger. A full chart of accounts is kept for
each “segment”. Each model has two of these,
MainLgrSegments.lgrseg for the main ledger and

 34

InvLgrSegments.lgrseg for the investment portfolio
ledger.

.lgmap

X X

Ledger map. Since detailed information in the
investment portfolio ledger is summarized in the main
ledger, this file provides the required mapping between
the investment portfolio ledger and the main ledger.

.lgr

 X

Ledger. At least one of these is produced for each
scenario in a model run. A ledger contains all
accounting records of the model simulation. Internally,
the model uses two ledgers, one for the investment
portfolio and one for the enterprise as a whole (the
“main” ledger). Since summarized investment results
are included in the main ledger, the detailed results in
the investment ledger are often not saved.

.rp

 X

Runtime parameters. Contains the list of runtime
parameters used to set up a run of the model. Example
items include the starting date and names of input and
output files.

.rpdef

X

Runtime parameters definition. This file defines the
items that must be contained in the list of runtime
parameters used to set up a run of the model. There
should be only one such file for each model.

.rptdef
X X

Report definition. This file contains the list of line
items to appear in a pre-defined financial statement or
other report from the ledger.

.rsdef

 X

Risk definition. This file is used to define the list of risk
drivers in connection with the Representative Scenarios
Method, wherein a small number of “representative”
scenarios for each risk driver are used instead of fully
stochastic scenarios.

.xml

 X

XML data. This can be any XML data file, but is used
specifically by the model for economic scenarios.
Scenario files are coded using EconSML, a dialect of
XML defined for this purpose. The file name should
indicate the content of the file.

Some suggestions for file naming

As you use your model, you will generate lots of files. A good naming convention can help you keep
them straight. Some suggestions include:

• Use folders to hold different types of files. Each model is automatically created with three sub-
folders named Input, Output, and Tables. It is suggested that you use those folders as their

 35

names imply, and perhaps create subfolders under Input and Output to organize your own
work.

• Create a newly named input file every time you change the contents of an input file. You can do
this by using the File | Save as… option after making your changes. This applies to:

o Assumptions (*.af)
o Investment strategies (*.invst)
o Investment portfolios (*.inv)
o Inforce contracts (*.inf)
o Runtime parameters (*.rp)
o Scenarios (*.xml)

• Use the name of the runtime parameters file (excluding the extension) as the name for the main

ledger output file. That way, if you need to check which files were used when creating a ledger,
you can check the corresponding runtime parameters file. That will also force you to save a
separate runtime parameters file for each set of model results that you want to save.

• Include the as-of-date in the name of files that are date-specific. For example, the investment
portfolio as of December 31 2013 might be named “InvPortfolio201312.inv”. This applies to:

o Investment portfolios
o Inforce contracts
o Scenarios

An alternative to this is to create a new folder for each model start date. The name of the folder
can be the start date in YYYYMM form. You can then create separate \Input and \Output
subfolders under that date-named folder.

3.3. Developing your first model

This section provides a step-by-step guide to creating your first asset/liability model using the
Workbench. The contract to be modeled is a 20-year term life insurance contract which provides a fixed
death benefit if the insured person dies during the 20 years after the contract starts. Insurance
premiums are payable in equal amounts at the beginning of each year.

1. Start up the Workbench and select “New project…” from the File menu.

a. In the dialog box, specify the folder for the project. Suggestion: create a new folder for
this purpose.

b. Another dialog appears – specify the name for the project file. Do not include spaces in

the name. Suggestion: TermModel

 36

2. Explore the workbench screen. The top title bar of the Workbench now shows the name of the

project file being worked on. The top left panel of the workbench now lists files contained in
the project. The bottom right panel shows the lists of ledger accounts that are provided by
default.

a. In the top left panel, click on the plus signs in the tree to expand it. Right click on one of
the file names that are shown, and in the pop-up menu click “open”. The file is opened
for editing in the central window, with a tab showing the file name. Close the file by
clicking on the “x” in the tab.

3. Explore your hard drive. Using the Windows Explorer, navigate to the project folder. Notice
that three sub-folders have been created under the project folder. These are \Input, \Output,
and \Tables. These folders were created when the project was created, and they are intended
for your use in organizing the data files to be created later. While you are free to create a more
complex structure of folders, bear in mind that the project folder itself and the \Tables subfolder
are required for the model to run. The project folder will contain the model program and all
source code, and the \Tables subfolder will be used by the Table Manager to retrieve actuarial
tables as needed.

4. Define an insurance contract for use in the model. In the top left panel, right-click on “Contract
types”, then click “New...”. In the popup window, type the name of the product you are
creating, e.g. “Term20”. Then click OK.

a. In the central panel of the workbench, a file tab appears with the name “Term20.ctype”.
This panel has its own set of tabs: Fields, Functions, Transactions, and Valuation.

In the Fields tab, enter the following list of master record fields for this contract type:

Name Type Description
ID string Contract number or identifier
NumContracts double Number of contracts in this cell
IssueAge int Age at issue
IssueDate int YYYYMM month of issue
FaceAmount double Face amount of insurance

In the Functions tab, enter the following list of items that need to be calculated each month in order to
simulate transactions:

Name Type Description
PolicyYear Int Current policy year (first year = 1)
PolicyMonth int Current month within the policy year (1 = first month)

 37

TotPremium double Total premium paid
TotClaims double Total claims paid
TotExpenses double Total expenses incurred
TotReserve double Total reserve liability
NumClaims double Number of death claims
NumExpiries double Number of contracts expiring

In the Transactions tab there are three tables. The two on the right are linked to the one on the left. In
the left table enter the list of monthly transactions:

TransactionName Description
Premiums Premium payment
Claims Payment of death benefits
Expenses Payment of expenses

The top right “ledger entries” table is keyed to the transaction name selected in the top left table.

Select the “Premiums” transaction and enter the following in the “ledger entries” table:

Action Account Amount Timing
Credit RenewalPrem TotPremium Beg
Debit Cash TotPremium Beg

Select the “Expenses” transaction and enter the following into the “ledger entries” table:

Action Account Amount Timing
Credit Cash TotExpenses Beg
Debit MaintExp TotExpenses Beg

Select the “Claims” transaction and enter the following into the “ledger entries” table:

Action Account Amount Timing
Credit Cash TotClaims End
Debit DeathBen TotClaims End

Note that in each of the above cases, the Account is either “Cash” or an item that appears in the list of
main ledger accounts on the bottom right of the screen, and the Amount appears in the list of Functions
on the top right.

While the “Claims” transaction is still highlighted, enter the following into the “data updates” table:

 38

Field name New value
NumContracts NumContracts-NumClaims-NumExpiries

Go to the “Valuation” tab and enter the following in the table:

ItemDescription CalculatedVariable BalanceSheetAccount IncomeStmtAccount
Statutory reserves TotReserves Reserves IncRes

As with the transactions entered earlier, the BalanceSheetAccount and IncomeStmtAccount must be
names that appears in the list of main ledger accounts at the bottom right of the screen. The
CalculatedVariable must appear in the list of Functions on the top right.

Go to the “Sales mix” tab and click on the button “Copy contract fields”. The table is filled in with the list
of fields defined earlier for the master record, plus an additional field named “PctSales” for percent of
sales. A record with these fields is used to define a type of contract to be sold in the future, along with
the fraction of total sales that will be of that type of contract. A set of these records is called a “sales
mix”, and we will create a file defining a sales mix later.

After entering all these items, save the file. Either use the File|Save menu item or click on the blue disk
icon on the toolbar. Then close the Term20.ctype file by clicking on the X in the tab at the top of the
center panel.

The top right panel now shows the names of the fields, functions, etc. that you defined for your product.

5. Define some assumptions for use by your model. Assumptions are created in groups, so that
related assumptions can be viewed and edited together. We will create two assumption
groups, one for table numbers (mortality and lapse), and one for expense assumptions.

To create an assumption group, go to the top left panel, right-click on “Assumption Groups” and then
click on “new…”. In the pop-up window, enter then name “TableNumbers” and click OK. The central
panel now has a tab titled “TableNumbers.asgrp”.

In the tab, give the assumption group a name and a number. Leave the checkbox unchecked (about
varying by date). Then enter the following description of the table numbers needed:

Number Text Mnemonic Decimals Description
1 Mortality rates table number MortalityTableNum 0 Qx table
2 Lapse rates table number LapseTableNum 0 Wx table
3 Premium rates table number PremRateTableNum 0 Prem rate table

 39

After these are entered, save the file by clicking on the blue disk icon on the toolbar, then close the file.
Note that the Mnemonics of the assumptions you entered now appear in the lower left panel of the
workbench.

Create a second new assumption group named “Expenses”, and fill in the name and a different number.
Enter the following description of the expense assumptions needed, then save the file and close it.

Number Text Mnemonic Decimals Description
1 First year sales expense % premium FirstYrPctPremExp 4 Distribution cost
2 Annual maint. expense per contract AnnualMaintExp 2 Maintenance expense
3 Expense per claim PerClaimExp 2 Claim processing exp

Create a third assumption group named “Sales”, and fill in the name and a different number. In this
case, check the “Assumptions in the group vary by date” box. Enter the following description of the
sales assumptions, then save the file and close it.

Number Text Mnemonic Decimals Description
1 Premium on new sales Term20Sales 0 Total sales in each month

After saving all three assumption group definition files, go back and edit them to be sure the three
groups have different group numbers and that all the assumptions in each group are numbered
sequentially 1,2,3,… This numbering scheme significantly speeds up lookup of assumption values in the
model.

 40

6. Create a blank assumption file. Use the Workbench’s top menu Model Assembly | Create data
files | Assumptions menu item to create an assumption file.

a. After doing so, note the presence of the file “Assumptions.af” in the “Input” folder. We
will edit this file later – it has blanks for values at this point.

b. In the top left panel of the Workbench, note that under “Program code” there is a new
file named “AssumpCodes.cs”. Open that file to observe that it defines a named
constant for each assumption, based on the assumption group numbers and assumption
numbers you entered.

7. Create a blank runtime parameters file. Use the Workbench’s top menu Model Assembly |

Create data files | Runtime parameters menu item to create the file.
a. After doing so, not the presence of the file “RunParms.rp” in the “Input” folder. We will

edit this file later – it has blanks for values at this point.

8. Generate program code files. Use the Workbench’s top menu Model Assembly | Generate Code
menu item to bring up a dialog box allowing specification of which files to generate. Click on the
“select all” button, then the “Generate selected modules” button.

a. After doing so, note the presence of several new files under “Program code” in the top
left panel of the Workbench. These files are in the model project directory.

9. Build an executable model. Use the Workbench’s top menu Model Assembly | Build menu item

to compile the model. (The toolbar icon with a green downward arrow does the same thing.) If
successful, a message box will appear announcing success. You now have a stand-alone
executable model program. Of course it does no calculations. But it provides an interface for
creating and editing input files.

10. Startup your new executable model. Use the Workbench’s top menu Model Assembly | Run
menu item. Alternatively, click on the toolbar icon with the blue forward arrow. Or, find the
.exe file in your project directory using the Windows file explorer, and double click on the .exe.

a. After doing so, your new model program should take over the full screen. Try out some
of the menu items, including File | Edit and File | New. Don’t try running the model
calculations or viewing reports yet, because none of the product calculations are coded
and we haven’t created files with the required input data.

11. Get some tables for use by the model and put them in the \Tables subfolder. Keep your model

open while doing this step. You may wish to minimize the model window to do step a. below,
but that isn’t necessary.

a. First, obtain a table from the Society of Actuaries online database. Use your web
browser to go to the site mort.soa.org. Search for table number 1076 (2001 CSO super
select male). At the very right hand side of the search results there is a column labeled
“Actions”, inside which there is a link consisting of “XML” underlined. Click on that link
to obtain table 1076 in xml file format, and save the file in your \Tables subfolder. Then

 41

use the model’s main menu Tables | Update index of tables menu option to update the
index so it includes the table you added. After that you can view the table using the
Tables | View a table… menu option.

b. Create a table of lapse rates by duration. Go back to the model program that was left
open, and use the Tables | Create a table… menu option. This brings up a dialog
allowing you to define the shape of the new table. In the top set of radio buttions, click
“Duration” to indicate this will be a table by duration. Then in the bottom area, fill in 1
and 20 for the minimum and maximum tabulated durations. Then click the button
labeled “Edit table values”. This brings up a dialog that looks just like the table viewing
dialog, but allows you to enter values. On the “Description” tab, enter a table name and
the table number 10001. Then enter some lapse rates on the “Values” tab. When done,
click the “Save” button at the bottom of the dialog.

c. Create a table of premium rates by issue age. Use the Tables | Create a table… menu
option. This time, click the radio button for table structure “Aggregate by age”. Then fill
in the minimum and maximum age you wish for the table and click “Edit table values”,
just as before. Give this table a name and the table number 10002, enter some values,
and save the table as before.

12. Enter values for the assumption file. In your model, use the File | Edit | Assumptions… menu

option. A dialog appears allowing you to select an assumption file. Navigate to the \Input
subfolder and select Assumptions.af. When the dialog appears showing file contents, not that
there are two panes. On the left there is a list of the assumption groups you defined earlier,
allowing you to select the group being edited. On the right there is a worksheet allowing you to
enter values for assumptions in the selected group. To edit an assumption, first select the
assumption group and then click inside the worksheet containing assumption values and
navigate to the appropriate value. Enter the following assumptions values:

a. In the “Table numbers” group:
i. Mortality rates table number = 1076

ii. Lapse rates table number = 10001
iii. Premium rates table number = 10002

b. In the “Expenses” group:
i. First year sales expense % premium = 0.95

ii. Annual main. Expense per contract = 100
iii. Expense per claim = 150

c. In the “Sales” group, which has a date heading for each row:
i. In the first row enter the date 201701 and Premium on new sales = 10000.

ii. If you wish the level of sales to change over time, enter a new row for each later
date on which the level of sales should change. The model will use the value in
each row for all months up to the date in the next row, or forever if there is no
next row.

When done, save and close the assumption file.

 42

13. Create a new investment portfolio file. In your model, use the File | New | Inv portfolio menu
option. A dialog appears allowing you to provide a path name. Navigate to the \Input
subfolder and enter a name; the extension “.inv” will automatically be added. Then click on
“Open”. Another dialog will appear allowing you to specify parameters to create an investment
portfolio consisting of cash and a list of bonds. You must enter the “as of date” for this data, the
amount of cash, and parameters that define a list of bonds. To define the list of bonds, provide
the total book value, coupon rate, credit quality (normally 2 or 3 for A or BBB) and the longest
maturity in years. The bonds in the list will all be identical except for their maturity date. One
bond in the list will mature in each calendar month for the number of years until the longest
maturity. Click on “Create portfolio” to create the file.

14. Create a new investment strategy file. In your model, use the File | New | Inv strategy menu
option. Specify a name for the file; the extension “.invst” will automatically be added. A dialog
appears allowing you to specify an investment strategy. There are three tabs:

a. The “Cash” tab contains parameters for cash management
i. The “Maximum cash ratio” is the portion of the portfolio that will be kept in

cash at all times for minimum liquidity. New investments will not be purchased
unless cash in excess of this ratio accumulates. To force no future re-
investment, set this ratio to 1.0.

ii. The “Maximum borrowing ratio” specifies the largest loan that is allowed as a
portion of the total portfolio. When cash is needed but not available, loans are
simulated up to this maximum, then assets are sold. As future cash becomes
available, it is used to pay off loans first. To simulate no borrowing, set this ratio
to zero.

iii. The “Borrowing interest spread in basis points” is the spread over Treasuries
used to simulate the interest rate on loans.

b. The “Fixed income” tab has two radio buttons that correspond to different ways of
managing a fixed income portfolio.

i. The “Duration matching” radio button is disabled in this version of the
workbench because it has not been adequately tested. In a future version it
will activate the duration matching strategy. You must specify the target
duration in years, the maximum difference from target, and the longest
maturity allowed for new investments when lengthening the portfolio to
maintain the target duration.

ii. The “Specified allocation” radio button activates a strategy whereby available
cash is used to purchase a specified allocation of new fixed income investments.
The allocation is specified by creating a list of investments to purchase and the

 43

portion of cash used to purchase each one. The list includes the following
information for each item to be purchased:

1. Fraction. This is the fractional allocation to this investment type.
2. InvType. This must be “Bond”. Bonds purchased are semi-annual non-

callable coupon bonds with a lump sum maturity payment. Later
versions of the Workbench will allow mortgages and other fixed income
instruments.

3. MaturityMonths. This is the number of months to maturity as of the
purchase date.

4. Credit rating. Credit ratings are 1-6. Normal values are 2 and 3 for A or
BBB.

c. The “Equity” tab allows you to specify three parameters of a simple stock portfolio
strategy. Stocks are purchased when the aggregate value of stocks falls below a
specified minimum fraction of total portfolio value. Stocks are sold when their
aggregate value rises above a specified maximum fraction of the portfolio. When the
aggregate value of stocks falls between those levels, a regular annual fraction of the
stock portfolio is traded each year as specified by the turnover rate.

15. Create a new file listing policies in force. In your model, use the File | New | Contracts menu

option. A dialog appears allowing you to provide a path name. Navigate to the \Input
subfolder and enter a name; the extension “.inf” will automatically be added. Then click on
“Open”. Another dialog will appear allowing you to enter a list of contracts by specifying values
for each field on the master record of each contract. The fields correspond to those you
specified when you defined the contract. Note that you can create a list of identical contracts
quickly in the following way. First enter all the fields for one contract and then, with the cursor
on that contract, press Ctrl-c to insert an identical contract into the list. You can press Ctrl-c
repeatedly to create a long list of identical contracts, and then perhaps go back to vary the issue
ages or other parameters of each contract in the list.

16. Create a new sales mix file. In your model, use the File | New | Sales mix menu option. A dialog
appears allowing you to provide a path name. Navigate to the \Input subfolder and enter a
name; the extension “.inf” will automatically be added. Then click on “Open”. Another dialog
will appear allowing you to enter a list of contract types to be sold. The first field in each row is
“PctSales”, the percent of sales on the type of contract indicated in that row. Values in the
“PctSales” column should add to 100. Fill in the other columns with values that specify a type of
contract to be sold.

Note that there will be a column for the IssueDate. The value you put there will be overridden
with the actual issue date when new contracts are simulated by the model.

 44

17. Create a new report definition. In your model, use the File | New | Report definition menu
option. A dialog appears allowing you to provide a path name. In this case, do not navigate to
the \Input subfolder or any other subfolder. Report definitions should remain in the same
folder as the model program itself – the root project folder. Enter a file name for the report
definition; the extension “.rptdef” will automatically be added. Then click on “Save”. A dialog
will appear allowing you to define your report. There are three parts to the dialog:

a. The list of accounts to be used as the basis of the report. Every report follows the same
general format, where ledger account names appear as row headings and dates appear
as column headings. One must specify the list of accounts from which the row headings
will be taken. Normally this is MainLgrAccounts.lgract from your root project folder.

b. A name for the report.
c. Items in the report. This listbox, which appears on the bottom right, specifies the row

headings in the report. You add items to this list by highlighting an item from the list of
available items on the left, and then pressing one of the buttons in the center to add
that item, insert a blank line, or place an underline under the previous item. Once items
are in the list of items in the report, you can manipulate them using the buttons in the
bottom right corner of the dialog (delete, move up , move down). Suggestion – create a
report whose line items correspond to represent an income statement and/or balance
sheet.

18. Create a risk definition file. In your model use the Scenarios | Define risks… menu option to
bring up a dialog for defining the contents of a scenario. A dialog appears allowing you to
provide a path name. Navigate to the \Input subfolder and enter a name; the extension
“.rsdef” will automatically be added. Then click on “Open”. Another dialog will appear allowing
you to define the contents of a scenario. The defaults are just interest rates and equity returns.
Accept the defaults and save the file. (Note that there is an appendix named “Risk definition
files” with further information regarding risk definition files.)

19. Create some economic scenarios. In your model, use the Scenarios | Generate Scenarios…
menu option to bring up a dialog that serves as the scenario generator.

a. Click on the button to select the Risk definition file and select the file created n the
previous step.

b. Click on the button to select the file to generate and type in a name with the .xml
extension, such as “MyScenarios.xml”.

c. Enter the date to start from (201612) and the number of months to include in the
scenario. Note that values for the last month are treated as applying forever thereafter
in any model run for a longer time period.

d. In the box titled “Scenarios to generate:” click on the “Stochastic scenarios” radio
button and leave the number of scenarios at the default of 100.

 45

e. If you wish, type in new values for the initial yield curve, that is, the US treasury yield
curve on the start date (201612). Default values are already in the form and can be
used.

f. Click on the “Generate scenarios” button. You will get a message box saying “Scenario
generation complete” when your file has been created. A file with the name you
specified in b. above will then exist.

g. Close the scenario generation dialog. Use the Scenarios | View scenarios… menu option
to bring up a dialog that allows reviewing the scenarios you generated. First you must
select the file to view, so select the one you just created. Note that there will be two
files with similar names, one with the extension .xml and the other with the extension
.offsets.xml. Be sure to view the .xml file, not the .offsets.xml file as the latter is just an
index of scenarios, not the scenarios themselves.

20. Edit the runtime parameters file to put values in it. In your model, use the File | Edit | Runtime

parameters menu option. A dialog appears allowing you to select a runtime parameters file to
edit. You should find one in the /Input folder. After you select a file, a dialog box will appear
allowing you to edit the runtime parameters. Note that many of the parameters are file names
or folder names. When the cursor is on the input line for one of those parameters, you can click
on the appropriate button at the bottom, either “Browse for a file…” or “Browse for a folder…”
to select an item without the need to type out its full path name.

It is suggested that input files normally be found in the \Input subfolder, and output files be
placed in the \Output subfolder. Also, the \Tables subfolder is normally used as the folder
where tables are to be found.

Here are sample values for your first runtime parameters file. Full path names should be used,
so fill in your project folder name in place of the “…” that appears in names in the list below. If
you named your input files differently, use the names of the input files you saved:

Start date 201612
Months to run 60
Scenario file …\Input\TestScenarios.xml
Inv portfolio file …\Input\MyPortfolio.inv
Inforce file …\Input\MyInforce.inf
Sales mix file …\Input\MySalesMix.smx
Audit file …\Input\MyAudits.audit
Assumption file …\Input\Assumptions.af
Risk definition file …\Input\MyRiskDef.rsdef
Tables folder …\Tables
Main ledger file …\Output\Main.lgr
Inv ledger file …\Output\Inv.lgr
Inv strategy file …\Input\MyStrategy.invst

 46

Calc det reserve No
Calc stoch reserve No
Calc RSM reserve No
Calc RSM stoch reserve No
Num stoch scenarios 50
Num months in valuation 240

There are some check boxes on the right hand side of the runtime parameters dialog:

• Save investment detail ledgers. If checked, the investment ledgers created during any
outer loops will be saved, otherwise those ledgers will not be saved because the needed
summary investment results are included in the main ledger.

• Accumulate surplus. This checkbox does nothing by default, but the model developer
can retrieve its value and make it have some effect if desired.

• Save transaction detail files. If checked, an audit file will be written for each scenario.
The file name will be named with the main ledger file name with the word “_Audit_”
and the scenario number appended, and will be in .csv format. The file will contain one
record for each month for each contract ID being audited. The record will contain the
entire starting master record for the month plus all the calculated amounts for the
month. The list of contract ID’s being audited appear below this checkbox when it is
checked and is saved in the “audit file” named in the list of runtime parameters.

21. Close your model and go back to the Workbench to define some calculations. You need to
define the calculations required for the contract you are modeling. Open the program code for
the “Term20ContractClass.cs” file and edit the code for the “calc” methods. Below is sample
code that needs to be added to Term20ContractClass.cs to fill in the “calc” methods. Use the
Workbench’s source code editor to fill in this section of the file, and don’t forget to save the
changes.

The following notes might be useful:

• The name of the file to edit should appear in the Workbench’s top left list box under
“Program code”. If you didn’t name your product “Term20” then the file name will be
…ContractClass.cs where the “…” corresponds to your product name.

• Each required calculation routine already appears in the code that was auto-generated.
However, the space between the beginning and ending braces is blank. You must fill in
the code required to calculate the variable whose name appears after “calc” in the
name of each calculation routine. For example, calcPolicyMonth() must include ccode
that results in assigning a value to PolicyMonth.

 47

• In places where an assumption value is needed, you can quickly add the code to retrieve
the assumption by double-clicking on the assumption name in the list in the
Workbench’s lower left panel.

• In places where a field name or the result of a function is needed, you can quickly type
the correct spelling and capitalization of the name by double-clicking on the name in the
list in the Workbench’s top right panel.

Sample code appears on the next page. Note that no code is filled in for calcTotReserves() as
that calculation could be very long. For purposes of this tutorial we leave it out, thereby
treating the variable TotReserves as zero for now. Clearly the model will not be complete until
the calculation of reserves is specified.

 48

// Calculation routines ***********************************

public void calcPolicyYear(int aDate)
{
 // First policy year is 1
 int numMonths = BFDate.monthsBetween(IssueDate, aDate);
 PolicyYear = (int) (1 + Math.Truncate(numMonths / 12.0));
}

public void calcPolicyMonth(int aDate)
{
 // First policy month in each year is 1
 int numMonths = BFDate.monthsBetween(IssueDate, aDate);
 PolicyMonth = (numMonths % 12) + 1;
}

public void calcTotPremium(int aDate)
{
 TotPremium = 0;
 if(PolicyMonth == 1)
 {
 int tblNum = (int) block.GetAsmpValue(aDate, A.PremRatesTableNum);
 double premRate = TableManager.GetValue(tblNum, IssueAge);
 TotPremium = premRate * FaceAmount * NumContracts;
 }
}

public void calcTotClaims(int aDate)
{
 TotClaims = NumClaims * FaceAmount;
}

public void calcTotExpenses(int aDate)
{
 TotExpenses = NumContracts * block.GetAsmpValue(aDate, A.AnnualMaintExp)/12;
}

public void calcNumClaims(int aDate)
{
 int tblNum = (int)block.GetAsmpValue(aDate, A.MortalityTableNum);
 double qx = TableManager.GetValueSelect(tblNum, IssueAge, PolicyYear);
 qx = 1 - Math.Pow(1 - qx, 1.0 / 12.0);
 NumClaims = NumContracts * qx;
}

public void calcNumExpiries(int aDate)
{
 NumExpiries = 0;
 if((PolicyYear == 20) && (PolicyMonth == 12)) NumExpiries = NumContracts - NumClaims - NumLapses;
}

public void calcTotReserves(int aDate)
{
}

public void calcNumLapses(int aDate)
{
 int tblNum = (int) block.GetAsmpValue(aDate, A.LapseTableNum);
 double wx = TableManager.GetValue(tblNum, PolicyYear);
 wx = 1 - Math.Pow(1 - wx, 1.0 / 12.0);
 NumLapses = NumContracts * wx;
}

Be sure to save the file after making these changes.

 49

22. Re-generate the contract source code. This step may seem out of place, because we previously
generated the source code and just finished editing it. Nevertheless, THIS STEP IS IMPORTANT
because it updates the order in which calculations take place for the month.

Before re-generating the code, scroll down in the code for your ContractClass.cs to the method
ProcessMonth(aDate). (Or you can use Ctrl-F to activate Edit|Find.) Note that ProcessMonth()
calls each of the calcXXXX() methods in the order the calculated items were initially declared. It
is possible, however, that the calculation of one of the early items in the list might now depend
on the value of an item yet to be calculated later in the list. That would create an obscure error.
When the code is re-generated after you make changes, the dependencies among the calculated
items are reviewed and the order of the calculations in the code generated for ProcessMonth()
may change as a result. Also, if any circular references are found, a message box will notify you
of them.

To regenerate the contract source code use the Model Assembly | Generate code… menu
option. In the dialog, check the box for “Contract”. Then click “Generate selected modules”.

23. Update your model to reflect the revised calculations. Use the workbench’s top menu Model
Assembly | Build... menu option. This will invoke the compiler and create the .exe file in your
project directory. If successful, you will get a message dialog saying “Model build was
successful”. If not, a list of compiler messages will appear at the bottom of the screen. If you
double-click on any message in the list, the file with the offending code should open in the
editor window with the cursor placed at the point of error. Often such errors will be simple
syntax or spelling errors. It is up to you to correct the code, save the code file, and rebuild the
model until all errors are eliminated and you get the “Model build was successful” message.

24. Run your model. In your model, use the Model | Run menu option or click on the blue arrow on
the toolbar. A dialog appears allowing you to select a runtime parameters file. Once you specify
the runtime parameters, a list of scenarios appears in a listbox on the left side. These are the
scenarios contained in the scenario file named in the runtime parameters. You must select the
scenarios you wish to run. If there are many scenarios and you wish to run them all, click on the
checkbox labeled “Run all scenarios” and they will all be selected. However, we suggest running
just one scenario at this time. After selecting a scenario (or scenarios), click on the “Start”
button in the middle of the dialog. Messages indicating progress will appear. When done, the
last message will be “Model run complete”.

25. Generate and view a report, and save it as an Excel workbook. In your model, use the Reports |
Select ledger menu option to select a ledger file created in your model run – this would be the
filename you specified for the main output ledger with the scenario ID appended to it. After

 50

selecting the ledger file, note that its name appears on the toolbar labeled as “Reporting from”.
Any reports that are generated will use that file as their source.

In your model, use the Reports | User defined menu option. This brings up a dialog allowing you
to choose one of the report definitions you created (these are .rptdef files in the root project
folder). You can also specify which segment of the ledger to use, and you can specify the kind of
dates to use as column headings. When all are specified, click the “View report” button.

A report window should appear containing your report in what appears to be and acts much like
a Microsoft Excel worksheet. There is a toolbar at the top of the window that provides several
functions including:

• save the worksheet as an Excel file (the blue disk icon)
• change the ledger segment being reported on (first drop-down list box)
• change the dates to use as column headings (second drop-down list box)

Use this approach to create and save one or more reports as an Excel file. To save as an Excel
file, click the blue disk icon on the report window and you will be asked to provide an Excel file
name to use.

26. Go back to change a calculation, rebuild the model, and run it to see the results of your changes.

To do all this, follow these steps:
a. Close your model. Use the File | Exit menu option or click the X in the top right corner

of the window.
b. Update the source code. In the Workbench, open the source code file

Term20ContractClass.cs. Find the code for calcTotClaims(). Replace the line “TotClaims
= NumClaims * FaceAmount;” with the line “TotClaims = NumClaims * FaceAmount * 2;”
as if there were some sort of double-indemnity clause in the contract.

c. Re-generate source code. In the Workbench, use the Model Assembly | Generate
code… menu option. In the dialog, check the box for “Contract”. Then click “Generate
selected modules”.

d. Rebuild the model. In the Workbench, use the Model Assembly | Build… menu option.
e. Start the model. In the Workbench, click on the toolbar’s blue forward arrow.
f. Update the runtime parameters. Use your model’s File menu to edit a runtime

parameters file. Change the name of the “Main ledger” and save the modified list of
runtime parameters under a new name using File | Save As.

g. Run the new model using your new runtime parameters.
h. Select a ledger from the new model for reporting. Use the menu option Reports | Select

ledger…
i. Generate a report from the new model. Use the menu option Reports | User defined….
j. Repeat steps h and i for a ledger from the previous model. You should then have two

report windows open on the screen so that you can visually compare the results.

 51

27. Add the calculation of reserves. This was left out until now because the calculation of reserves
for insurance contracts can be complex, and is of no interest to Workbench users in other kinds
of business. One example of adding formulaic liability calculations appears in section 3.4 below.

3.4. Ideas and approaches for more complex models
This section provides general approaches that can be used to modify the C# code generated by the
Workbench to implement more complex models. Users that become familiar with the generated code
will find that most common modifications can be done in a straightforward manner because the Blufftop
Framework provides a clear structure within which to insert additional processing.

Adding formulaic liability calculations
The liability for a contract appears on the balance sheet and must be calculated. Often a formula-based
value can be used. The library ReserveLib.dll provides some utilities for US statutory reserves for some
kinds of insurance contracts. Here are two examples showing how one might use ReserveLib.dll or a
similar library of your own creation.

Net premium reserves for life insurance

Net premium reserves for life insurance can be calculated from a set of “commutation functions”. Life
insurance actuaries in the US are familiar with these functions with the names Cx, Mx, Dx, and Nx. The x
is a subscript denoting an attained age in years.

ReserveLib.dll contains a class named “CommutationFunctions”. To use it, do the following:

• In the code for XXXInforceClass (the specialized inforce class code for your contract type) add a
line to declare a class member that is an object of the “CommutationFunctions” class.

public CommutationFunctions commFunc;

• In the Initialize() method of XXXInforceClass, call the constructor for the object named above,
and then set two of its properties, the mortality table number and interest rate. (Note that if
the mortality table is a select table, you will need to set the issue age as well and also create a
separate instance of “CommutationFunctions” for each issue age to be modeled.) For example:

commFunc = new CommutationFunctions();
commFunc.TableNum = 41;
commFunc.IntRate = 0.03;
commFunc.IssueAge = 35;

• In the contract definition, in the list of “functions”, add an item for the reserve factor per dollar
of face amount. Name it something like NetPremiumReserveFactor.

 52

• Re-generate the code for your Contract type. The generated code in XXXContractClass.cs will
contain an empty method named calcNetPremiumReserveFactor(). You must fill in the code for
this method, and you can use the commutation functions in the code. To refer to the
commutation functions object you put in the inforce class, use a reference like this:

((XXXInforceClass)block).commFunc

where “block” is the normal reference to the inforce block in which the contract resides and in
which you added the commutation functions object. In this case it must be typecast to the
specific kind of inforce block for this product (shown as XXXInforceClass), because otherwise the
interface to the block does not include a reference to the commutation functions you added.
Once you have the reference to the object, you can use its Cx(age), Mx(age), Dx(age), and
Nx(age) methods as needed to calculate the net premium reserve factor. For example:

CommutationFunctions cFunc = ((XXXInforceClass)block).commFunc;

double netPrem =
(cFunc.Mx(35) – cFunc.Mx(55)) / (cFunc.Nx(35) – cFunc.Nx(55));

…

The formula above calculates the net level premium for a 20-year term contract issued at age
35. The actual NetPremiumReserveFactor formula would be more complex.

• Build and test your model. If everything goes well, you should see both the reserves and the
increase in reserves in the output ledger. However, you may discover that the reserve for the
model start date is shown as zero, as if it had not been calculated. It is important to understand
the reason for this, and it is easily fixed.

The reason the reserve (and other formulaic balance sheet items) are not calculated on the
model start date is that ProcessMonth() is not called before the initial valuation and therefore
all the calcXXX() methods are not called. In each future month, ProcessMonth() is called before
PerformValuation() so all the calcXXX() methods have been called and values of all the
calculated variables are available.

To fix this, one must insert code at the beginning of ProcessMonth() in the ContractClass code to
execute the required calcXXX() methods, but only if the date is the model start date. Code like
that below could be inserted at the beginning of ProcessMonth(). The user would need to
determine exactly which calcXXX() methods need to be called and in what order:

If (aDate == block.Ledger.StartDate)
{
 calcPolicyYear(aDate);
 calcNetPremiumReserveFactor(aDate);
 calcTotReserve(aDate);
}

 53

Note that code inserted in XXXContractClass.cs for PerformValuation() is overwritten by the
code generator, so if you ever regenerate the code for this ContractClass this inserted code will
disappear. It is recommended that you keep a copy of this inserted code somewhere (such as in
a text file) so that it can be easily re-inserted if it becomes useful to re-generate the code for
other reasons such as the addition of more fields on the master record or more calculated
variables.

The same situation applies to the code inserted above in XXXInforceClass.cs. The code
generator knows nothing about the inserted member “commFunc”.

The code generator does retain the code you put in all the calcXXX() methods in
XXXContractClass.cs. More details on which changes the code generator retains and which get
overwritten is included in the Appendix on the source code generator.

Reserves according to Actuarial Guideline 38

The calculations in Actuarial Guideline 38 are very complex and are specific to each contract. In this
case, we need to add a number of arrays of calculated items to the data maintained in memory for each
contract. These arrays are not part of the contract master record; they are created and calculated when
the contract is initialized for modeling either as part of the initial inforce or as a new sale.

To accomplish this, one can create a new C# code file that extends the code for the ContractClass.
Name this file XXXContractClassExtensions.cs where the XXX is the name of the contract type.

An example of such a file is ULSGContractClassExtensions in the \Examples\AG38 folder. This file
provides extra code for ULSGContractClass; code that will not be touched by the Code Generator. The
code does three main things:

• Declares the arrays of values by policy duration needed for AG38 calculations.
• Provides a method named Setup() to calculate the arrays.
• Provides a function named AG38Reserve() to calculate the reserve for a particular duration

using values from the arrays and the current contract status.

Note that all of the data on the contract master record is available to the Setup() and AG38Reserve()
routines since they are inside the same class with the rest of the contract.

These routines need to be called from the code for XXXContractClass.cs, and the user must insert the
code to make the calls. Setup() should be called from SetLgrSeg() because that routine is already called
when a contract is being created for modeling. AG38Reserve() should be called from within the
calcXXX() routine where XXX is the name you gave to the AG38 liability value.

One further coding change is needed. The Clone() method in XXXContractClass.cs must be expanded so
that it creates a copy of the arrays declared in XXXContractExtensions.cs for the cloned contract.

 54

Important: The code generator knows nothing about these arrays, so it does not add them to the auto-
generated Clone() method. If you run the code generator again later to generate XXXContractClass.cs,
you must be sure to re-insert the code to copy these arrays because the code generator will have
deleted it because it knows nothing about them. The code generator maintains any code previously
written in SetLgrSeg() or the calcXXX() methods, but always rewrites the Clone() routine to clone the
data declared in the contract definition file.

Separating results by year of issue
Some accounting frameworks require treating each year of new business separately. This is often done
for capitalization and later amortization of business sales and acquisition expenses, but is sometimes
done for other reasons as well.

It is not difficult to implement this treatment in the Workbench. The following changes would be
required:

• Edit the list of ledger segments in the file MainLgrSegments.lgrseg. Create a ledger segment for
each year of issue, and create a virtual segment containing the total. When done editing the
file, generate the code to define the names of the main ledger segments; this will rewrite the
code file MainLgrSegments.cs.

• In the XXXContractClass.cs code, modify the SetLgrSeg() method so that it sets the ledger
segment number based on the year the contract was issued. The issue date is normally one of
the data fields on the master record.

• In the XXXInforceClass.cs code, in the Initialize() method, change the values given to the
variables FirstLgrSeg and NumLgrSegs to specify the range of ledger segment numbers used by
this inforce block.

• At the end of the ModelControllerClass.cs code there is a method called MapInvResults(). This
method allocates investment portfolio results (assets, income, capital gains, etc) to the ledger
segments in proportion to the total liabilities in each segment. You may wish to use some other
allocation basis, and if so you will need to edit the code in MapInvResults().

• Inside the generated code for XXXControllerClass.cs there is a method named
PeriodEndProcessing(). This is called at the end of the simulation for each model month. If you
wish to capitalize and amortize acquisition costs or perform other calculations that depend on
the ledger totals for each year of issue, you could put the code to do so in
PeriodEndProcessing().

Note that investment portfolio yields are calculated and stored in the ledger using the code in the
routine PeriodEndProcessing(), which is contained in XXXControllerClass.cs. The code provided by
default stores investment yields in ledger segment 1 only. This is so that if you create a report with total
results across many ledger segments, the investment yield is added in only once. If you wish to record
the investment yields elsewhere, you need to change the code in PeriodEndProcessing() to do so.

 55

Contract changes such as annuitization
Some insurance contracts involve two distinct phases, an active or accumulation phase, and a payout or
claims phase. Here are some examples:

• A deferred annuity contract involves accumulation of premiums for a period of time, after which
the money may be withdrawn or used to fund future lifetime income payments. This is a
contract with an accumulation phase potentially followed by a payout phase.

• A long-term disability insurance contract involves payment of premiums while healthy, and the
potential for a claim to put the contract in claim payment status. This is a contract with an
active phase and a claims payout phase. Long-term-care insurance is similar in this respect.

In the Workbench it can be appropriate to model the active or accumulation phase as one contract, and
model the payout or claims phase as a separate contract. Two different contract definition files are
created, one for the active or accumulation phase and one for the payout or claims phase. The
XXXContractClass.cs for each contract in the active or accumulation phase is modified to contain a list of
the payouts or claims contracts that have arisen from it.

The following kinds of changes are needed to implement a model of this sort.

• Create two different contract definition files, one for the active or accumulation phase and one
for the payout or claims phase.

• When code is generated, there will be an YYYInforceClass for the payout or claims phase (where
YYY is the name of the payout or claims contract definition). An instance of this inforce must be
included in the contract code for the active or accumulation phase. To do so, create a separate
code file containing extensions to that class, possibly named XXXContractClassExtensions.cs.
Inside the code for XXXContractClass add an instance of the YYYInforceClass for payouts or
claims that will arise from this contract. You may also wish to add other code to support
creation of new claim or payout contracts.

• There is a method in the generated code for XXXContractClass.cs which is normally left blank. It
is called ProcessContractChanges() and is called at the end of each month. This is where any
new payout or claims contracts should be created and added to the list contained in the active
or accumulation phase contract. Also, the list’s processMonth() method must be called to
process all of the payouts or claims in the list.

• The PerformValuation() method in the auto-generated code for XXXContractClass.cs does not
know about the list of payouts or claims. You must insert a line of code to call the
PerformValuation() method of the list.

This is just a broad outline of the changes that are needed. As you get familiar with the object-oriented
structure of the code, filling in the details will not be difficult. Careful testing is of course always
necessary to ensure all changes work as intended.

 56

4. How to use models produced by the Workbench

Models produced by the Workbench carry out asset / liability simulations using future economic
scenarios, with financial statements as the primary output. This section describes how to run the
simulations and how to view the output.

4.1 The top level user interface
Every model developed using the Workbench uses the same top level user interface. When the model is
started, the main window appears:

The window title bar displays the name of the model and the working folder, which is normally the
project folder.

The top menu provides the means to edit or create model input data, run the model, and view the
results. The top menu options are:

• File meu. This provides options to create or edit any of the model input files, including
o Assumptions
o Runtime parameters
o Inforce files (lists of contracts at the model start date)
o Sales mix files
o Investment portfolios

 57

o Investment strategies
o Report definitions

All of the files listed above are stored in XML format. In some cases it is easier to prepare the
list of contracts in .csv format using Excel spreadsheets. Therefore the file menu provides
options to import from or export to that format.

• Tables menu. This provides the ability to create, view, or edit the actuarial tables used by the
model. Tables are stored in files in the \Tables subfolder. Each table file has the name
tNNN.xml where NNN corresponds to the table number. Creation of tables is the responsibility
of the user; no tables are provided by default. The Society of Actuaries maintains an online
library of standard tables that can be downloaded in .xml format and used here. In most cases
the user will want to create some proprietary tables for use as well.

• Scenarios menu. This provides the ability to create or view files of scenarios to be used by the
model. It also provides an option to create or edit a risk definition file – a file that defines the
risk drivers used in the Representative Scenarios Method (RSM). More information is in the
subsection below on ”Working with Scenarios”.

• Model menu. This provides the option to run the model, also provided by the forward arrow
button on the toolbar. More information is in the subsection below on “Running the
asset/liability simulations”.

• Reports menu. After the model has been run, this menu option provides options to select
ledger files and generate reports based on them. The path name of the currently selected
ledger appears on the toolbar after the “Reporting from:” label. Reports appear in spreadsheet-
style windows. More information is in the subsection below on “Viewing reports”.

Many of the top menu options bring up dialog boxes or other windows that appear in the large grey
area in model main window. When it is useful, several different windows can be displayed there at the
same time; for example several different reports might be displayed side-by-side.

The toolbar provides buttons to open a file, save a file when editing it, save a file under a new name.
The forward arrow icon brings up the dialog to start a model run.

The looking glass icon at the right end of the toolbar is a file viewer utility. Most files are in either XML
or CSV form, so this utility allows viewing XML files in their native form as readable text, or viewing CSV
files as worksheet tables.

4.2 Files used by the model
All of the files used by a model normally reside in either the project folder or sub-folders within the
project folder. The files can be listed in three categories: input files, output files, table files, and model

 58

support files. Each category normally resides in a separate designated folder, but the user can change
the folder structure.

4.2.1 Input files
Input files are created by the user to provide data for the asset/liability simulation. They are normally
kept by the user in the \Input sub-folder under the project folder. Files that are normally kept there
include the following:

• Runtime parameters (*.rp) Specify all the file names and other inputs for a model run
• Assumption files (*.af) Contain all assumption values for a model run
• Inforce files (*.inf or *.csv) Contain the list of contracts at the start of a model run
• Sales mix files (*.smx) Specify the mix of new contracts to be sold in a model run
• Investment portfolio files (*.inv) Specify the list of investments owned at model start
• Risk definition files (*.rsdef) Define the risk drivers for use in RSM scenarios
• Scenario files (*.xml, *.offsets.xml) or (*.csv, *.index.csv)

o Specify scenarios of future economic conditions
o Each set of scenarios is in two files, one for data and one as an index

4.2.2 Output files
Output files are generated by running scenarios through the model. They normally are written to the
\Output folder under the project folder.

The following output files are commonly produced:

• Ledger files (*.lgr). The model always saves the main ledger for every output loop scenario that
is run. The file name is as given in the runtime parameters, but with the scenario ID appended
before the file extension.

• Stochastic summary files (*.lgrdb). After a set of stochastic scenarios has been run, the Reports
menu allows the user to create a summary of selected stochastic results. Such a summary is
contained in this file, with the same name as the main ledger and the extension .lgrdb.

• Audit file (*.csv). When audits are requested, an audit file contains one line for each month and
for each contract being audited. The data shows the full master record and all calculated
amounts for that month. The file name is the name of the main ledger, but with the word
“Audit” appended.

• RSM calculation file (*_RSM*.csv). When RSM liability calculations are performed in an inner
loop, a summary of the PV of cash flows for each RSM scenario is saved with other summary
data in a file for each valuation date. The file has the same name as the main ledger, but with
“RSMYYYYMM” appended after the scenario ID. YYYYMM is the year and month of the
valuation date. The file is in .csv format.

 59

4.2.3 Table files
Table files contain actuarial tables. These can be tables of values by age or duration, select tables by age
and duration, or continuance tables of the sort commonly used for disability insurance.

Tables are normally kept in the \Tables sub-folder under the model project folder. The user is entirely
responsible for files that are placed there. Each table is stored in its own file in .xml format. The file
name is “tNNN.xml” where NNN is the table number.

The \Tables sub-folder also contains an index to the tables in it. The index is in the file
IndexOfTables.xml.

The Society of Actuaries keeps a library of actuarial tables available on the internet in the .xml format
that is used by the Workbench. That format is called XtbML and was developed by the Technology
Section of the Society of Actuaries in cooperation with ACORD. It is also the format used by the Table
Manager software that has been used by many actuaries.

4.2.4 Model support files
Model support files are required for the model to run, but normally are not listed in the runtime
parameters. They must be present in the same folder as the model executable file (*.exe), which is
normally the project folder that contains all of the source code and other files that define the model.

The following model support files must be present in the same folder as the model executable file
(*.exe)6

• Ledger definitions
o MainLgrAccts.lgract
o MainLgrSegs.lgrseg
o InvLgrAccts.lgract
o InvLgrSegs.lgrseg
o InvLgrMap.lgrmap

• Standard default rates and credit spreads

o VM20CreditRiskTables.csv

• Libraries of compiled code used by the model software
o BFCoreLib.dll Core software routines in the Blufftop Framework
o BFFormLib.dll User interface routines in the Blufftop Framework
o BFInvLib.dll Investment processing in the Blufftop Framework
o BFReserveLib.dll US statutory reserve calculations in the Blufftop Framework

6 If the project is moved for development using Visual Studio, then all of the model support files must be
placed in the same folder with the executable file (.exe). In Visual Studio that is normally in a
\bin\Debug or \bin\Release sub-folder of the project folder.

 60

o BFScenLib.dll Provides scenario data routines for .csv files
o SpreadsheetGear.dll Provides spreadsheet capabilities (third party)
o TeeChart.dll Provides charting capabilities (third party)
o TSScenarioLib Provides scenario data routines using EconSML in .xml files.
o XtbmlLib.dll Manages actuarial tables using XtbML in .xml files.

 61

4.3 Working with scenarios
Every model created with the Workbench includes a multi-risk scenario generator. Included in that
generator is the economic scenario generator defined in VM-20 for use with life insurance reserves in
the US. The generator is expanded here to include additional risks defined by the user, and to generate
scenarios consistent with the Representative Scenarios Method.

4.3.1 Defining risks
Before one can generate multi-risk scenarios, one must define some risks. To do so, use the top menu
Scenarios | Define risks… option to create or edit a risk definition file. If you are creating a new file, you
will be asked to specify the folder and filename to use. If you are editing an existing file, you will need to
specify the file to edit.

After selecting the file, you will see the dialog box below. This dialog box below enables the user to
specify the complete set of risk drivers to be included in a set of scenarios, with information about the
probability distribution for each risk driver. This information can be stored in a file that is named with
the extension .rsdef (for risk definition file).

The list of risk drivers in the file is shown in the top left corner. When you create a new file, the "Equity"
and "Interest" risk drivers will already be included, since those are in every set of scenarios used for VM-

 62

20. You can add more risk drivers by typing a name next to the "Add:" button and then clicking the
button. You can delete a risk driver by highlighting its name in the list and then clicking the "Delete"
button.

Whenever a risk driver other than "Equity" or "Interest" is highlighted, the other parts of the dialog box
allow you to specify characteristics of the highlighted risk driver. Characteristics include the following:

Distribution form:

You must select one of the radio buttons to specify the form of the probability distribution for the
highlighted risk driver.

Distribution applies to:

The distribution can apply either to experience for a single year (so it changes from year to year in each
scenario) or it can apply to the entire lifetime of each scenario (so it is constant for all years of one
scenario but varies between scenarios). In most cases the distributions apply to a single year of
experience, but the distribution for a risk driver like the rate of mortality improvement might be
specified as applying to a scenario lifetime.

Experience study data:

If the selected distribution form is Binomial, Poisson, Beta, or Gamma, then the user must input some
experience study data. Three items are required, and they should be based on experience for one year.
The items are 1) the number of observed risk events, 2) the total number of contracts exposed to the
risk event, and 3) the ratio of the number of observed risk events to the anticipated number based on
the table to be used in the projection model. After entering this data, the user should click on "Update
selected risk". Then the distribution is calculated based on the entered data, a chart of the probability
density function (PDF) is shown on the bottom right, and some percentile points on the distribution are
shown on the top right.

The calculation of the distribution based on the experience data is one way to simplify the development
of margins for VM-20. The distribution tends to get narrower as the volume of experience data
(especially the number of observed risk events) increases, thereby decreasing the margins in reserves
based on the generated scenarios.

If the selected distribution is User-defined, then this area is greyed and disabled. Instead, the percentile
points on the distribution must be entered manually on the top right of the form. One must then click
"Update selected risk" to update the chart of the PDF on the bottom right.

Percentile points in user-defined distribution:

These are percentile points on the distribution of the Actual / Tabular ratio for the highlighted risk
driver. If the selected distribution is User-defined, then the user must enter these numbers and then

 63

click "Update selected risk". If the selected distribution is not user-defined, these numbers are updated
automatically when the user clicks on the button to "Update selected risk".

When the distribution is updated automatically, the results reflect both statistical risk and parameter
risk. Statistical risk is random fluctuation around the mean. Parameter risk is the risk that the mean from
the experience data may not be exactly the true mean.

Normally the figure entered for the 50% level (the median) will be near 1.0 because these are percentile
points on the distribution of the Actual / Tabular ratio.

Representative scenarios for selected risk:

The checkboxes in this area allow the user to specify which Representative Scenarios are to be
generated for this risk driver. This is only relevant when generating Representative Scenarios; the
information is ignored when generating stochastic scenarios.

4.3.2 Generating scenarios
To generate scenarios, use the top menu "Scenarios" item and select the option to generate scenarios.
When you do so, the dialog box below appears.

 64

Before you can generate scenarios you must specify the risk definitions to be used and where to put the
generated scenarios. The two "Select" buttons at the top of the dialog allow you to specify a risk
definition file and the name of the file to generate.

Once the files are specified, you must specify the starting conditions. These include the scenario starting
date, number of months, starting yield curve, mean reversion point. You must type these values into the
boxes that are provided. The values shown are just defaults, and you should review and probably
change each one.

You must also select the scenarios to be generated. A scenario file can contain either Representative
scenarios, Stochastic exclusion test scenarios, or Stochastic scenarios. Use the radio buttons on the left
to specify which kind of scenarios you wish to generate. When generating stochastic scenarios, you must
specify the number of scenarios to generate. Note that for interest rates and equity returns, the
generated scenarios will correspond to the first N scenarios out of the 10,000 scenarios from the official
VM-20 generator.

Finally, you can click the "Generate scenarios" button to generate the scenarios. The bar just under that
button will be filled from left to right to indicate progress, and a message box will appear when scenario
generation is complete.

Once you have generated a scenario file, you can view it using the top menu option Scenarios | View
scenarios… to select the file to view.

4.4 Running the asset / liability simulations
When the user selects either the menu option or the toolbar button to run the model, a dialog like the
one below appears.

Initially the name of the runtime parameters file to use will be blank. The user must click the “Select…”
button to select a file of runtime parameters.

Once the parameters file is loaded, the list of scenario IDs on the left side will be filled in. This list comes
from the scenario file specified in the runtime parameters.

To run one or more scenarios, select the desired scenario IDs on the left and then click the “Start”
button. The model will start running, and messages will occasionally appear in the large box under the
start button. The last message to appear will indicate completion of the model run.

The results of each scenario are saved in the main ledger file named in the runtime parameters. The
scenario ID is appended to the name before the .lgr filename extension.

Note that the model is designed to run each scenario on a different processor, using up to four
processors at a time. The limit of four is in place due to the likelihood of a data bottleneck if more
processors are used on the same machine. When all processors are on the same chip, the same data

 65

paths are being shared for all processors, and their capacity is limited. Models of this sort use lots of
data, and experience has shown that use of more than four processors on one chip does not improve
performance in such models.

4.5 Viewing the output
After the model has been run and one or more *.lgr files have been saved, the results can be viewed
using the built-in report generator.

One must first select the ledger file to use when generating reports. Use the top menu Reports | Select
ledger… menu option or click the corresponding button on the toolbar. After a ledger file is selected, its
name will appear in the toolbar box labeled “Reporting from:”.

Since the ledger chart of accounts can be user-defined, all reports from the ledger are also user-defined.
To generate a report, use the top menu Reports | User defined… menu option. That brings up a dialog
like the one below. The user can select:

• Line items. Each item in this list is a report definition file specifying the row headings.
• Ledger segment. Each item in this list is a subset of the business for which results were kept

separately. Normally “Total” is the last item in the list.

 66

• Columns. The column headings in the report will be dates, but they can be period-only or year-
to-date, and they can be monthly, quarterly, or annual.

When your choices are made, click on “View report”. That brings up a window like the one below
containing a report with the requested row headings, dates, and segment. The report window looks
and acts like a spreadsheet report, and if desired you can enter formulas in it just as you would with a
spreadsheet. You can also use the toolbar button to save the report as a spreadsheet file in Microsoft
Excel format.

The toolbar has drop-down listboxes that allow you to change the dates and segment of the business
being viewed. There are also buttons to insert or delete rows or columns. The rightmost toolbar button
is for drill-down. If you click the drill while the focus is on a cell in the report that contains a number
that is the sum of other numbers, then rows will be inserted showing the detail items that are included.

 67

Note that the window title bar names the ledger file from which the report was generated. It is possible
to generate several reports from different ledger files and keep all the report windows open at the same
time.

When a set of stochastic scenarios has been run, a large number of ledger files will be produced (one
per scenario). It can be useful to create a summary of key items across all scenarios and view their
distribution. This can be done using the Reports | Stochastic summary | Create summary file… menu
item. When this is selected, a dialog like the following appears, allowing you to select which items in the
currently selected ledger (which must be one ledger from a stochastic run) should be included in the
stochastic summary file.

The list of items is the chart of accounts from the ledger, including all virtual (subtotal) accounts. Select
one or more items and click OK to prepare a stochastic summary. The created file will have the same
name as the main ledger, but without a scenario ID and with the extension .lgrdb.

To view results of a stochastic summary, use the top menu option Reports | Stochastic summary | View
results… This brings up a dialog based on the stochastic summary associated with the currently selected
ledger file. A sample is shown below for results from a stochastic model for long-term care insurance.

 68

The listbox on the left shows the items for which stochastic results were collected. Select an item from
that list and then click the “Prepare summary” button above the list. All of the tabbed displays on the
right will then be updated with information on the distribution of stochastic results.

 69

5. Appendices

Defining and using assumptions

The workbench allows the user to define numerical assumptions to be used. Assumptions are
commonly used to set the values of things like the following:

• Contract expense charge rates
• Company expense rates or unit costs
• Tax rates
• Future sales amounts
• The table number of actuarial tables to be used for:

o Claim rates
o Contract termination rates

The Workbench does not come with any assumptions pre-defined. This is a major difference from most
enterprise modeling platforms that come with very long lists of pre-defined assumptions. In the
Workbench you define only the assumptions you need and wish to use, thereby skipping the learning
curve associated with understanding a long list of pre-defined assumptions, many of which you may not
need or use.

Assumptions are grouped together for purposes of viewing and editing. Each group of assumptions
corresponds to a dialog box in which they can be edited together as a list. Most models include several
assumption groups.

Below is a sample definition of an assumption group. Each time you ask the Workbench to create or
edit an assumption group, a file editing tab like this one is added to the open file editing tabs on the
workbench screen.

Each assumption group must be given a name that describes its contents.

 70

Each assumption group must be given a group number. This can be any positive integer that is divisible
by 100, but you must avoid assigning the same number to more than one assumption group. This
number is used internally by the Workbench for efficient lookup of assumption values.

The assumptions in each group can optionally vary by date. If this option is selected, all assumptions in
the group vary by date, and they are displayed for editing using a column for each assumption and a row
for each date. If this option is not selected, the assumptions are displayed for editing as a list with
names on the left and values on the right.

Each assumption is defined by five items.

• Number. This must be an integer from 1 to N where N is the number of assumptions in the
group. Each value 1 through N must be assigned to an assumption in the group. This is used
internally by the Workbench for efficient lookup of assumptions during model runs.

• Name. This is the name that will be displayed when editing the assumption values.
• Mnemonic. This is the variable name that will be used in code to refer to the assumption.

When code is generated, all of these mnemonics are put in the namespace A, so that the
assumption can be referred to in code by A.MyMnemonic. That way there is no chance that the
mnemonic will conflict with other variables that might use that name but are not in the
namespace A. The C# code that defines this namespace all of these mnemonics is put into the
file AssumpCodes.cs.

• Number of decimals. The number of digits to be displayed after the decimal point when editing
the assumption value.

• Description. A short description of how the assumption is used. This is for your own
documentation.

An assumption file contains all of the assumption groups defined within a model. Assumption files are
named with the extension *.af.

After defining all assumption groups for your model, you must create an assumption file. This is done
using the top menu item Model Assembly | Generate files | Assumptions. This will create the file
Assumptions.af in the \Input folder under your model folder. If a file by that name was already there, it
will be renamed with the extension .old.af and a new file will be created, carrying over any assumption
values for assumptions that were in both the old and new files. Creating an assumption file also creates
or overwrites the source code file AssumpCodes.cs that defines the list of assumption groups used by
the model.

When using a model, you will sometimes want to save different sets of assumption values in separate
files. To create a new file for a new set of assumption values, first use the “Save as…” option to save an
existing file under a new name. You will then have two copies of the file with identical contents. Then
edit the file with the new name, change the assumption values, and save it. The name of the
assumption file that will be used in any run of the model is specified in the runtime parameters.

 71

Actuarial tables and the Table Manager

Models developed using the Workbench include functionality that allows easy use of actuarial tables.
The top menu bar includes an item named “Tables” which brings up a sub-menu for viewing, creating,
and editing tables.

Every model project is created with a folder named “Tables” where such tables are to be stored.
However, if the user has an existing library of tables stored in a different folder, the model can be told to
use that folder using the menu option Tables | Select folder for tables…

Inside the Tables folder, each table is stored in a file with the extension .xml. The format used for tables
is the same as used by the Society of Actuaries in their online library of tables, and is the same as that
used by the Table Manager software that is widely used as an add-in to Microsoft Excel.

When values from actuarial tables are needed in model computer code, the code must specify the table
number and age or other parameters needed to retrieve the desired value. One of the following
syntaxes is used to retrieve the table value, depending on the type of table:

• TableManager.GetValue(tableNum, age)

• TableManager.GetValueSelect(tableNum, age, duration)

• TableManager.GetValueContinuance(tableNum, age, duration,
durationAxisName)

The function syntax after “TableManager.” is exactly the same as is used in worksheet formulas when
using the Table Manager add-in for Microsoft Excel.

 72

Chart of accounts and the ledger

The Workbench allows you to define your own chart of accounts for use in the models you build. This
gives you flexibility to simulate any set of accounting rules and to store any additional numerical
information you wish in the ledger.

The file “MainLgrAccts.lgrdef” defines the chart of accounts in the main ledger. When you open that file
for editing, a tab like the following appears in the file edit area:

Every account that you define has all of the following properties:

• Name. This is the title used when displaying this item on financial statements. It can include
more than one word, as in “Investment income” or “Distribution expenses”.

• Mnemonic. This is a shortened version of the account name that is used in computer code to
refer to an account. The mnemonic must follow the rules for variable names in computer code.
That means it cannot include blanks, but can be a combination of words or abbreviations as in
“InvIncome” or “DistributionExp”. A mnemonic must start with a letter, not a numerical digit.

• Account Type. The account type helps distinguish accounts that normally have a credit balance
from those that normally have a debit balance, so that the sign of the balance can be displayed
appropriately on financial statements. The account type is a single letter equal to one of the
following:

o ‘A’ Asset
o ‘L’ Liability
o ‘I’ Income
o ‘E’ Expense
o ‘S’ Capital and Surplus
o ‘O’ Other. Accounts of this type are excluded from the “balancing” of the ledger.

They are used to store amounts such as inventory counts, transaction counts, and any
other result that would not normally be stored in an accounting ledger. Any account
that is defined as a formula sum of other accounts is of this type.

• Formula. Financial statements include subtotals and totals. In the Workbench these are made
available by defining accounts to hold them. These account balances are not actually stored;
they are defined by a formula that can be calculated as needed based on other account balances
that are stored. Because these account balances are not stored they are referred to as “virtual”
accounts. The accounts that are actually stored have no formula and are referred to as “non-

 73

virtual” accounts. Each account in the formula for a virtual account is indicated by its mnemonic
preceded by a + or – sign. Note that the formula for one virtual account can include another
virtual account, and you must be careful not to create circular references.

• Account Number. Each account you create is assigned a number automatically by the
Workbench. It should be noted that the non-virtual accounts are numbered from 1 to N, where
N is the number of such accounts. This numbering allows the account number to serve as an
array index into an array of account balances. This helps speed the internal processing when
account balances must be accessed or updated. Virtual accounts are numbered starting from
1000, leaving room for 999 non-virtual accounts and an unlimited number of virtual accounts.

The ledger account balances for any single time period comprise a two-dimensional array. One
dimension corresponds to the chart of accounts and the other dimension corresponds to “segment” of
the business. For modeling purposes, the business can be divided into segments in any manner you
wish. The list of ledger segments is set up just like the chart of accounts, where each segment has a
name, mnemonic, formula and number (but no “account type”). There can be both virtual and non-
virtual segments. There should always be a “Total” virtual segment defined as the sum across all the
non-virtual segments.

The chart of accounts that you define is contained in two files. The list of accounts is in
MainLgrAccounts.lgract, and the list of segments is in MainLgrSegments.lgrseg. These files appear in the
“Ledger definition” group in the project file list on the top left of the Workbench screen. You can edit
these files to modify the chart of accounts to meet your needs.

When debit and credit entries are made to the ledger, both the account number and segment number
must be defined for each entry. In computer code, the mnemonic is used as a variable that refers to the
account number. To keep these mnemonics from conflicting with other variable names in the model,
they are put in a separate “namespace”. When they appear in code, the mnemonic is preceded by the
namespace name and a period. The account names are in namespace “L”, so account numbers appear
in code as L.AccountMnemonic. The segment names are in the namespace “S”, so segment numbers
appear as S.SegmentMnemonic.

Models developed using the Workbench actually maintain two ledgers internally. One is the main
ledger we have been discussing, and the other is a separate ledger used just for recording investment
portfolio transactions. The accounts and segments in the investment ledger are standardized, so you
are not expected to change them.

There is a separate investment ledger for each investment portfolio in the model. At the end of each
accounting period, results in the investment ledger(s) are mapped into the main ledger. This is done for
the following reasons:

1. The main ledger may keep less detailed investment results. The investment ledger keeps
separate results for cash, fixed income, and equity investments while the main ledger may only
store the total. In addition, the investment ledger keeps cash flow information that the main
ledger may not need.

 74

2. The total investment results may need to be allocated over the segments of the main ledger.
For example, the main ledger may define a separate segment for contracts sold in each calendar
year. If the investment portfolio supports all contracts, investment results must be allocated
across all segments.

The mapping from the investment ledger to the main ledger is defined partly by data and partly in code.

The data used in the mapping is in a ledger mapping file named InvLgrMap.lgmap. Every model you
construct has this file. It contains a list of the accounts in the investment ledger, and indicates the
account in the main ledger to which each should be mapped. You can edit this file – it falls in the
“Ledger definition” group in the project file list on the top left of the Workbench screen. When you edit
the file, you see a dialog like the picture below, with the list of investment ledger accounts on the left
(these are standardized in all models) and the list of main ledger accounts on the right (this is the chart
of accounts you can define as you wish). Clicking the button on the bottom updates the mapping for the
investment ledger account selected on the left. After editing the file you must save it for the changes to
become permanent.

When the mapping requires an allocation, then program code is used to define the allocation. The
routine MapInvResults(), inside the Controller, carries out the mapping and allocation. The version
provided in the base class Controller (in ModelControllerClass.cs) allocates total investment results in
proportion to the total liabilities in each main ledger segment. You can override this method in the
Controller class that is set up for your specific model if a different allocation basis is desired.

 75

Report writer

The Workbench allows you to define reports to be generated from information in a ledger. A report
definition consists of a list of ledger accounts. That list is used as the set of lines in the report. Blank
lines and underlines can be included in the list. Virtual accounts, which are defined as formulas based
on other accounts, can be included in the list. This enables quick and easy definition of a financial
statement report such as an income statement or balance sheet.

To create a new report definition, you must first select the chart of accounts to be used. The available
charts of accounts are those that define the main ledger and those that define the investment ledger.
These are contained in MainLgrAccounts.lgract and invLgrAccounts.lgract.

After selecting the chart of accounts to use, the report can be defined using a dialog like the one below.

 76

The box on the left lists all available accounts in the chosen chart of accounts. The buttons in the middle
insert lines in the list box on the right, which defines the report. The buttons on the bottom left allow
the lines in the report to be re-arranged.

Every model generated by the Workbench includes a report generator that uses these report definitions
to create reports in worksheet form. Quite a few different reports can be generated from one report
definition, because the user can select the columns for the report at the time it is generated. The
columns are normally calendar dates and can be annual, month-only or monthly YTD. The user can
select the ledger segment for which the report should be generated. These options can be changed on
the fly after the report window is displayed, using controls on the report window.

Reports appear in worksheet form in a report window. The user can manipulate the report in several
ways just like a worksheet, inserting and deleting rows and adding simple formulas if desired. Reports
can be saved as Microsoft Excel worksheet files for further manipulation, formatting, and analysis.

Risk definition files

After selecting the file, you will see the dialog box below. This dialog box below enables the user to
specify the complete set of risk drivers to be included in a set of scenarios, with information about the
probability distribution for each risk driver. This information can be stored in a file that is named with
the extension .rsdef (for risk definition file).

 77

The list of risk drivers in the file is shown in the top left corner. When you create a new file, the "Equity"
and "Interest" risk drivers will already be included, since those are in every set of scenarios used for VM-
20. You can add more risk drivers by typing a name next to the "Add:" button and then clicking the
button. You can delete a risk driver by highlighting its name in the list and then clicking the "Delete"
button.

Whenever a risk driver other than "Equity" or "Interest" is highlighted, the other parts of the dialog box
allow you to specify characteristics of the highlighted risk driver. Characteristics include the following:

Distribution form:

You must select one of the radio buttons to specify the form of the probability distribution for the
highlighted risk driver.

Distribution applies to:

The distribution can apply either to experience for a single year (so it changes from year to year in each
scenario) or it can apply to the entire lifetime of each scenario (so it is constant for all years of one
scenario but varies between scenarios). In most cases the distributions apply to a single year of
experience, but the distribution for a risk driver like the rate of mortality improvement might be
specified as applying to a scenario lifetime.
Experience study data:

If the selected distribution form is Binomial, then the user must input some experience study data.
Three items are required, and they should be based on experience for one year. The items are 1) the
number of observed risk events, 2) the total number of contracts exposed to the risk event, and 3) the
ratio of the number of observed risk events to the anticipated number based on the table to be used in
the projection model. After entering this data, the user should click on "Update selected risk". Then the
distribution is calculated based on the entered data, a chart of the probability density function (PDF) is
shown on the bottom right, and some percentile points on the distribution are shown on the top right.

The calculation of the distribution based on the experience data is one way to simplify the development
of margins for VM-20. The distribution tends to get narrower as the volume of experience data
(especially the number of observed risk events) increases, thereby decreasing the margins in reserves
based on the generated scenarios.

If the selected distribution is User-defined, then this area is greyed and disabled. Instead, the percentile
points on the distribution must be entered manually on the top right of the form. One must then click
"Update selected risk" to update the chart of the PDF on the bottom right.

Percentile points in user-defined distribution:

These are percentile points on the distribution of the Actual / Tabular ratio for the highlighted risk
driver.

 78

If the selected distribution is User-defined, then the user must enter these numbers and then click
"Update selected risk". If the selected distribution is not user-defined, these numbers are updated
automatically when the user clicks on the button to "Update selected risk".

Normally the figure entered for the 50% level (the median) will be near 1.0 because these are percentile
points on the distribution of the Actual / Tabular ratio.

Representative scenarios for selected risk:

The checkboxes in this area allow the user to specify which Representative Scenarios are to be
generated for this risk driver. This is only relevant when generating Representative Scenarios; the
information is ignored when generating stochastic scenarios. The 16% and 84% scenarios correspond to
1 standard error, while the 1% and 99% scenarios correspond to almost 3 standard errors.

 79

Principle-based valuation and the inner loop

Models developed using the Workbench are used to project financial statements for future dates.
Financial statements include a valuation of liabilities, so valuation must be done on future dates.
Valuation can be carried out either by using user-specified formulas or using a discounted cash flow
approach.

Principle-based valuation is defined here as a valuation equal to the discounted present value of future
cash flows. To carry out such a valuation on a date in the future the model must carry out what is called
an “inner loop” to project the cash flows starting from the valuation date. The “outer loop” is the loop
through time starting from the model start date and running for the projection period. The “inner loop”
starts from any valuation date during the projection period and runs for the number of time periods
needed for the business on the valuation date to run off or expire. It is common for the “inner loop” to
run until a later date than the “outer loop”.

The inner loop differs from the outer loop in other respects as well. Since there is no foreknowledge of
the future economic scenario on the valuation date, it is common for the economic scenario used for
the inner loop valuation to be different from that in the outer loop for dates after the valuation date. In
addition, the experience assumptions used in the inner loop may include margins that are used for
valuation but which are not part of anticipated experience in the outer loop.

The Workbench provides a framework for carrying out inner loop valuations. Part of that framework
involves generating scenarios for the inner loop, and the Workbench comes already set up to generate
and use inner loop scenarios required for US statutory life insurance valuations. This includes the
deterministic and stochastic scenario sets defined in the valuation manual (VM-20). In addition,
scenario sets based on the proposed Representative Scenarios Method (RSM) can be used.

The subsections below explain how the Workbench handles these aspects of the inner loop:

• How the model controller handles inner loops
• Requesting that the inner loop be included in a model run
• Generating the inner loop scenarios
• Adding margins to assumptions for use in inner loop valuation scenarios
• Capturing and using results of inner loop scenarios

How the model controller handles inner loops

The model simulation performs a valuation at the end of each time step. The valuation is done in two
parts. First a formulaic valuation is done using any formulas specified by the user. Then the runtime
parameters are checked to determine whether an inner loop should be run. If an inner loop is to be run,
the routine MyController.RunInnerLoop() is called. That routine has a section of code for each runtime

 80

parameter that specifies whether an inner loop is to be run. For each such runtime parameter, the
section of code does the following if an inner loop is to be run:

1. Clones the model for use in running inner loop scenarios.
2. Adjusts the cloned model so that it knows that it is an inner loop model, and provides it with a

reference to the outer loop model where any results should be stored.
3. Adjusts the runtime parameters in the cloned model to start from the valuation date and to run

for the number of months specified for inner loops in the runtime parameters.
4. Calls the Scenario Manager to generate the scenario or scenarios to be run in the inner loop
5. Clears the collection of inner loop results (if not previously cleared for this valuation date)
6. Calls the cloned model’s RunInnerLoopModel() method to run all the scenarios in this inner

loop. At the end of each scenario, the cloned model’s CollectResults() method will be called to
capture the desired results and store them in a collection of inner loop model results. The
collection is keyed by both scenario ID and an item name for each stored result. Items normally
stored include the monthly cash flows and discount rates to be used in valuation.

7. Instructs the Scenario Manager to resume the outer loop scenario.
8. Writes a message to the run log indicating the completion of this inner loop for this date.

After all inner loops have been run, the collection of inner loop model results (which is contained in the
outer loop model) has been filled but not yet used. The outer loop controller’s ApplyInnerLoopResults()
method must retrieve information from that collection, perform any calculations required (such as
computing the discounted present value of cash flows) and save the key results by making entries in the
outer loop’s main ledger. The chart of accounts must include accounts where such entries can be made.

For certain inner loops, all of this is handled in the code auto-generated by the Workbench. This
includes inner loops for US statutory reserves under VM-20 (the deterministic and stochastic reserves)
and inner loops to carry out valuations under the Representative Scenarios Method (RSM).

The user can define other inner loops. Doing so requires several modifications to a model:

• Adding a runtime parameter to indicate whether to run the specialized inner loop
• Adding a section of code to the controller’s RunInnerLoopModel() method to check the runtime

parameter and set up the inner loop.
• Invent a name to be included in the scenario ID for each scenario to be used. The scenario ID

can be that name with a scenario number appended to the end.
• If necessary, refine the Scenario Manager to generate the scenario(s) to be used.
• Add code to the controller’s CollectResults() method to store the results for scenarios whose

scenario ID includes the name you invented to identify such scenarios. This will be called at the
end of each inner loop scenario.

• Add code to the controller’s AppyInnerLoopResults() method to retrieve the stored data from
the inner loop scenarios, perform any required calculations, and save final results to the main
ledger. This will be called after all inner loop scenarios have completed for a valuation date.

 81

The sample code auto-generated for some inner loops can be used as a template or example for the
changes needed to introduce specialized inner loops.

Requesting that the inner loop be included in a model run

The list of Runtime Parameters that define a model run must include direction regarding the inner loop.

Four parameters are included in the list by default when any new model is first set up. Each can have a
value of Yes or No. The parameters are:

• Calc det reserve Calculates the VM-20 deterministic reserve
• Calc stoch reserve Calculates the VM-20 stochastic reserve CTE70
• Calc RSM reserve Calculates the RSM reserve using representative scenarios
• Calc RSM stoch reserve Calculates a multi-risk stochastic reserve

You can act on the value of these runtime parameters using code like this:

if (runParms.GetParm("Calc stoch reserve") == "Yes"){}

An if-statement like that for each such runtime parameter is normally included in the controller’s
RunInnerLoopModel() method and in its ApplyInnerLoopResults() method.

Two other runtime parameters specify aspects of the inner loop:

• Num stoch scenarios The number of stochastic scenarios for stochastic reserves
• Num months in valuation The time period over which future cash flows are projected

The runtime parameters listed above should be kept in each model even if not in use. If they are
removed, the code that refers to them should also be removed.

The user can add inner loops of different kinds to the model by adding additional runtime parameters
and writing code in the Controller to act upon them. See the previous subsection for a list of changes
that must be made to add a specialized inner loop to a model.

Generating the inner loop scenario(s)

The ScenarioManager included in the Workbench includes a generator that can generate several kinds
of inner loop scenarios on the fly, starting from economic conditions on the valuation date.

The economic conditions on the valuation date are easily retrieved from the outer loop scenario. The
generator also uses a “mean reversion point parameter” that serves as the long term expected mean of

 82

the interest rate on 20-year US Treasury bonds. By default the Workbench will use 4.00%, but this can
be changed by the user. To change it, the user must provide the value to be used and set it in the
section of code in MyController.RunInnerLoop() when setting up an inner loop. For example, the user
could include an assumption in the model’s assumption file and retrieve it there. The following line of
code could be used to set the mean reversion point using an assumption with the mnemonic
“MeanRevPoint”:

ScenarioManager.meanReversionPoint =
block.GetAsmpValue(aDate, A.MeanRevPoint);

Calling one of the ScenarioManager methods in the table below carries out the scenario generation
process starting from current conditions and using the mean reversion point. It also puts the scenario
manager in a state where the newly generated scenarios are being used.

Command Scenario ID(s) generated Description
SetPBRDeterministicScenario(m) “_PBRDeterministic” The deterministic investment

scenario defined in VM-20 for
principle-based reserves.

SetPBRStochasticScenarios(n,m) “_PBRStochasticX” where X is
the scenario number

The stochastic investment
scenarios defined in VM-20 for
principle-based reserves. Only
the first n of the standard
10,000 scenarios are generated.

SetRSMScenarios(r,m) “_RSMX” where X is the scenario
number

The representative scenarios
defined by the risk definition
file.

SetRSMStochasticScenarios(r,n,m) “_RSMStochasticX” where X is
the scenario number

Stochastic scenarios that include
stochastic paths for all the risks
in the risk definition file.

SetValuationScenario() _valuation Interest rates on the valuation
date continue forever.

SetOCIValuationScenario() _OCIvaluation Interest rates from 12 months
prior to the valuation date
resume and continue forever.
This scenario has been used in
some proposed accounting
frameworks to help quantify the
effect of interest rate changes in
the past 12 months so that it
can be recorded as OCI (Other
Comprehensive Income).

Several of the commands require arguments in parentheses. The arguments are:

• m Number of months to include in the scenario
• n Number of scenarios to generate

 83

• r Full path name of the risk definition file

The generated scenarios always include future interest rates. The PBR scenarios also include future fund
returns. The RSM scenarios include scenario paths for all the risk variables defined in the risk definition
file, including interest rates and fund returns.

When an inner loop is complete, the command ScenarioManager.ResumeScenario() must be issued to
reset the ScenarioManager to a state where the outer loop scenario is being used.

Adding margins in the inner loop assumptions

Exactly the same code is used for the projections done in the inner loop and outer loop. Therefore, if
one wishes to use different assumptions in the projection of contract cash flows in the inner loop, one
needs a way to check whether the code is being executed inside an inner loop or an outer loop.

Typically this is done inside the contract processing. The user must write all of the code used to
calculate values used in contract processing. Inside the code for MyContractClass, the following
statement will execute the code inside the curly brackets only when in an inner loop.

if (!Controller.IsOuterLoopModel){}

This kind of if-statement can be used to alter or replace values previously calculated. For example,
statements can be placed inside the curly brackets to add a margin to a previously retrieved assumption
value.

Scenarios developed for RSM (the Representative Scenarios Method) contain paths over time for risk
drivers other than investment returns, in the form of actual-to-tabular ratios. The current actual-to-
tabular ratio is retrieved by name from the scenario manager using code like this:

myRatio = ScenarioManager.currentEnvironment.GetMiscRate("RiskVariableName");

When the inner loop is running scenarios other than RSM scenarios, those risk variables will not appear
in the scenario so zero will be returned. It is best to check whether risk variables retrieved from a
scenario are zero before using them.

You may wish to check whether the scenario is an RSM scenario or a PBR scenario. This can be done
with code like the following:

if (ScenarioManager.currentScenarioID.Contains("PBR")) {}

if (ScenarioManager.currentScenarioID.Contains("RSM")) {}

Note that all generated RSM scenarios are given scenario IDs that contain “RSM”, even when they are
generated for the outer loop. The only scenario IDs that contain “PBR” are those generated for an inner
loop valuation.

 84

Capturing and using results of inner loop scenarios

The controller for every outer loop model contains a storage facility for results of inner loop models.
This was described earlier as an object of the ResultsDictionaryClass, and it is named “modelResults”. It
can store any kind of model result keyed for lookup by scenario ID and item name.

Common items to store from an inner loop include the array of projected monthly cash flows and the
array of monthly discount rates for use in calculating the present value of future cash flows.

The controller routine CollectResults(scenarioID) is where results are captured at the end of an inner
loop scenario. Typically results are extracted from the main ledger, but they can be anything. A line like
the following is used to store a variable named myResult.

modelResults.AddResult(scenarioID, "Result name", myResult);

The variable myResult can be an array or any other type. When it is retrieved later, it will need to be
typecast to the kind of item that it is.

Note that the collection of modelResults is never saved as a file. If you wish to save the ledger created
during inner loop runs, there is code at the end of CollectResults() that has been commented out but
could be used to save the ledger. Saving the ledger from inner loops is not normally recommended
because of the large number of files created when stochastic valuations are being done not just once,
but on every future valuation date.

Retrieval and use of inner loop model results occurs when the outer loop controller calls its
ApplyInnerLoopResults() method. Normally this method has a section for each runtime parameter that
specifies whether an inner loop is run. Such a section would begin like this, with extra statements inside
the curly braces:

if (runParms.GetParm("Calc stoch reserve") == "Yes"){}

The statements inside the curly braces normally retrieve items from modelResults, perform calculations,
and them make entries to the main ledger of the outer loop model. The auto-generated code does this
for the inner loop valuations specified in the default list of runtime parameters. The auto-generated
code can serve as a template for the user to write code for other kinds of inner loop valuations.

Principle-based margins and the Representative Scenarios Method (RSM)

The Representative Scenarios Method (RSM) has been developed as a simple and clear process for
adding margins to liability valuations. While a full description of RSM is beyond the scope of this

 85

manual, the general idea is that a sensitivity test scenario is developed for each risk driver, that is, each
risk for which a margin should be included in the reserve. The amount of extra reserve required for that
risk is based on the present value of cash flows in the sensitivity test scenario. The total margin for all
risks is based on the sum of the amounts for each risk, adjusted for correlation.

The sensitivity test scenarios are called “Representative Scenarios” because they are designed not only
to represent a specific risk driver, but to do so at a stated level of severity on the distribution of results
for that risk driver.

The Workbench generates Representative Scenarios using information entered by the user in a Risk
Definition File with the extension *.rsdef. The user interface for creating and editing such files was
described earlier in this User Guide.

To use RSM for valuations within a model run, the user must set three Runtime Parameters:

• “Calc RSM reserve” must be set to “Yes”
• “Risk definition file” must be set to the full path name of the *.rsdef file to be used
• “Num months in valuation” must be set to the number of months of cash flows to project for

valuation purposes.

When this is done, each outer loop scenario will include inner loop scenarios to calculate the RSM
valuation at each year-end. An output file will be written for each valuation date to show the results of
all the inner loop scenarios. The file name will be the same as the main ledger output file name, but
with “_RSMYYYYMM” appended and the filename extension changed to .csv. The YYYYMM part of the
filename corresponds to the valuation date, with YYYY being the year number and MM being the month
number.

The .csv file that is saved for each date contains information like the excerpt shown below. The columns
show:

• The name of each risk driver
• The probability weight for the scenarios (add to 1.00 within each risk driver + anticipated)
• The pattern of experience variation (pop or creep)
• The scenario probability level in the cumulative distribution for the risk driver
• The scenario present value of cash flows

Beneath those columns, four items calculated based upon the scenario present values are shown. These
are:

• The central estimate of the liability
• The reserve margin
• The reserve (central estimate plus margin)
• An estimated capital requirement

 86

These items are calculated using source code in the file RSMCalculator.cs. The user can adapt the
source code if changes are desired in the way any of these items are calculated based on the scenario
present values.

While not shown in the excerpt below, the .csv file also contains the month-by-month cash flows and
discount rates from the anticipated experience scenario.

The source code generator

RSM data for 202412
DefaultCost 0.023 pop 0.999 20,995,825
DefaultCost 0.286 pop 0.841 20,310,980
DefaultCost 0.286 pop 0.159 19,840,307
DefaultCost 0.023 pop 0.001 19,815,209
Expense 0.023 pop 0.999 20,233,858
Expense 0.286 pop 0.841 20,045,390
Expense 0.286 pop 0.159 19,920,581
Expense 0.023 pop 0.001 19,734,162
None 0.382 Anticipated 0.5 19,982,982
Interest 0.023 pop 0.999 19,309,152
Interest 0.286 pop 0.841 19,791,301
Interest 0.286 pop 0.159 20,156,015
Interest 0.023 pop 0.001 20,430,221
Lapse 0.023 pop 0.999 18,524,971
Lapse 0.286 pop 0.841 19,447,067
Lapse 0.286 pop 0.159 20,526,251
Lapse 0.023 pop 0.001 21,444,910
Mortality 0.023 pop 0.999 24,848,919
Mortality 0.286 pop 0.841 21,251,724
Mortality 0.286 pop 0.159 18,716,210
Mortality 0.023 pop 0.001 15,106,580
MortImprovement 0.023 pop 0.999 18,750,666
MortImprovement 0.286 pop 0.841 19,240,699
MortImprovement 0.286 pop 0.159 21,240,861
MortImprovement 0.023 pop 0.001 25,160,549
Central estimate 20,056,592
Margin 1,890,989
Reserve 21,947,581
Capital 7,210,921

 87

One of the most powerful and valuable parts of the Workbench is the source code generator. This
provides the ability to automatically write most of the computer code for a model based upon the
product definition provided by the user.

The source code generator is accessed using the main menu option “Model Assembly” and submenu
option “Generate code”. This brings up a dialog allowing you to select which part(s) of the model code
to generate:

When you click on “Generate selected modules”, the *.cs files for the selected modules will be
generated. While doing so, any code that the user has previously entered for some routines will be
preserved, while other routines will be completely re-written. If the user has previously modified the
code in the routines that get re-written, the modifications will not be carried over to the newly
generated code. Therefore it is vital for the user to be aware of any changes made to routines that get
re-written and decide whether to avoid using the code generator or to move those changes manually to
any re-generated code.

Here is a summary of the files that the code generator can write, including a list of routines in each file.
All of those routines are generated each time the code generator is run. In many cases when a previous
version of a file exists, the previous version of the routine is carried over because it may contain user
modifications. In some cases, however, the routine is always re-written and previous changes are
discarded (because generally there should be no reason for the user to make any). The last column in
the table below indicates whether a routine is carried over or re-written when a previous version exists.

Program entry point
File name: ProductNameModel.cs
Description: This is a standard program entry point module.

Routine Description Previous code re-written or

carried over
Main() The main Windows program

entry point
Re-written

Model controller
File name: ProductNameControllerClass.cs
Description: This code is for a customized model controller for this particular model based on the
product definition. A C# class is defined by inheriting from ModelControllerClass. This is done by
overriding some of the methods in ModelControllerClass.cs and adding some utility calculation
methods.

Routine Description Previous code re-written or

carried over
Constructor() Default version just calls the

base class constructor
Carried over

 88

RunModel() Sets flags to run any inner loops
and calls base class RunModel()

Carried over

SetupObjects() Sets up any objects that are not
scenario-specific. Typically this
just calls the base class
SetupObjects()

Carried over

SetupScenario() Sets up any objects that need to
be re-set at the start of each
scenario. This includes the
inforce file and sales mix file.

Carried over

PeriodEndProcessing() If there is an inner loop and this
is December, calls
ApplyInnerLoopResults().
Allocates investment results
from the investment ledger to
the main ledger.
Calculates the monthly
investment yield and saves it to
the main ledger.
Updates the surplus account.

Carried over

RunScenario() Calls the base class version of
RunScenario()

Carried over

CollectResults() Called at the end of each inner
loop scenario. Captures the
vector of cash flows, discount
rates, and number of contracts
and stores them in modelResults.

Carried over

ApplyInnerLoopResults() Called from PeriodEndProcessing
in the outer loop in periods
when inner loops are run (e.g.
each December). Retrieves
results from modelResults ,
performs calculations, and puts
final results in the main ledger.
Calculations include the present
value of cash flows.

Carried over

PVCF() Calculates the present value of
cash flows when given a vector
of cash flows and a vector of
discount rates.

Carried over

UpdateInforceStatus() Called before PerformValuation()
during processing each month.
Can be used to update global
things like an interest crediting
rate used for an entire block of
contracts. By default, this
routine is empty.

Carried over

 89

GetInforceFile() Creates an object to represent
the inforce block and reads in
the file containing the starting
list of contracts.

Carried over

GetSalesMixFile() Creates an object to represent
the sales mix and reads in the
file containing the assumed sales
mix.

Carried over

ModelName() Returns the name of this model Re-written
CloneForInnerLoop() Clones the model Re-written

Inforce block
File name: ProductNameInforceClass.cs
Description: This code is for a customized inforce block of business for this particular product based on
the product definition. A C# class is defined by inheriting from InforcBlockClass.

Routine Description Previous code re-written or

carried over
Initialize() Sets the range of main ledger

segments used by this inforce
block by setting the values of
variables named FirstLgrSeg and
NumLgrSegs.

Carried over

AddNewSales() Retrieves the amount of sales
from the assumptions, creates
new contract records and adds
them to the list of contracts in
force. The user may need to
change the name of the sales
assumption used to retrieve
sales.

Carried over

PerformValuation() Loops through all contracts and
retrieves and records the
valuation amounts defined by
the user in the contract
definition file. Takes care of
recording both the liability
amounts and “change in liability”
amounts. Also removes any
expired contracts from the
inforce block.

Re-written

Any changes made by the user
must be manually carried over
when code is re-generated.

This routine does not perform
valuations that require an inner
loop – that is handled by the
controller.

ProcessMonth() Loops through all contracts
calling each contract’s
ProcessMonth() method and
returning the total cash flow.
This can normally be done just
by calling the ProcessMonth()

Carried over

 90

method of the base
InforceBlockClass.

Clone() Creates a cloned copy of this
inforce block. This includes
cloning all of the contracts
currently included.

Carried over

CreateTable() Creates a database table
containing the list of contracts.
A table is used when editing the
list of contracts.

Re-written

PutDataInTable() Puts the list of contracts into a
database table

Re-written

GetDataFromTable() Retrieves the list of contracts
from a table.

Re-written

Contract
File name: ProductNameContractClass.cs
Description: This code is for a customized financial contract under which amounts will be paid to the
contract owner. The contract was defined in a contract definition file. A C# class for this contract is
defined by inheriting from ContractClass.

Routine Description Previous code re-written or

carried over
Declarations

Declarations of all defined:
 Master record data fields
 Calculated variables

Re-written

Constructor Re-written
SetLgrSeg() Sets the value of LgrSeg, the

ledger segment number where
this contract is to be recorded.

Carried over

SalesMeasure() Returns the per-contract amount
of sales. Any assumption for the
amount of sales is divided by this
to get the number of contracts
sold. The default value is 1.0.

Carried over

calcXXX()

where XXX is a variable name

Calculation routines for each
calculated variable XXX. By
default these are blank and code
must be entered by the user.
When these routines are
executed, all master record fields
hold their values as of the
beginning of the month.

Carried over

processXXX()

where XXX is a transaction name

Transaction processing routines
for each transaction XXX. The
processing involves ledger
entries and master record

Re-written

 91

updates, both of which are
defined in the contract definition
file.

processContractChanges() This routine is a placeholder that
is called after all regular
transactions are processed for a
month. It allows the user to
insert special processing for
things like annuitization or term
conversion. The default does
nothing.

Carried over

processMonth() This is the method that simulates
all transactions for the month. It
calls all of the calcXXX()
methods, writes a record to the
audit file if requested, records all
transactions in the ledger,
updates the master record, and
performs any contract changes
at the end of the month, all by
calling other methods listed
here. This method returns the
amount of cash flow generated.

Re-written

performValuation() This method calculates all the
formulaic valuation amounts
defined in the product definition
and makes a credit entry to the
ledger account to which each is
assigned.

Re-written

WriteAuditRecord() When audit output is requested
in the runtime parameters, this
routine creates a line of data for
a .csv file containing the date,
the contract master record and
all calculated variables for the
month.

Re-written

WriteToFile() Writes this contract to an XML
file

Re-written

ReadFromFile() Reads a contract from an XML
file

Re-written

Clone() Makes a cloned copy of this
contract

Re-written

Other items generated along
with Contract

Description Previous code re-written or
carried over

Class factory code A class factory for creating a
contract in computer memory.

Re-written

Partial inforce block class Portions of the Re-written

 92

ProductNameInforceClass where
the code depends on internal
details of the contracts. These
routines enable reading and
writing the inforce block using
.csv files. The names of master
record fields and calculated
variables are used for column
headings in the .csv file.

SalesMixClass

This code is put in a separate file
named
ProductNameSalesClass.cs

A class that handles the sales mix
file.

All is re-written except for the
routine MakeInforceCell(), which
is carried over. That routine is
used to create a new inforce
record from a sales mix record
given a date and an amount of
sales.

Statutory reserves and BFReserveLib.dll

The Workbench does not provide complete calculations of statutory reserves for any kind of insurance
contract. However, it provides some utilities that you can use or adapt as needed. Please understand
that these libraries are provided as is and are not warranted to be correct or to satisfy regulatory
requirements. They should be considered only a place to start.

These utilities are contained in BFReserveLib.dll which defines three utility classes:

• CommutationFunctions
• ContinuanceFunctions
• AG38Calculator

The class CommutationFunctions helps to calculate tabular reserve factors for fixed-premium life
insurance and annuity contracts with reserves defined by a mortality table and an interest rate. To use
it, first create an instance of the class:

 CommutationFunctions CommFunc = new CommutationFunctions();

Then specify the mortality table number and issue age. Note that the issue age only matters when the
mortality table is a select and ultimate table.

 CommFunc.TableNum = 1234;

 93

 CommFunc.IssueAge = 35;

Optionally, you can also specify table numbers for lapse rates and X-Factors for use in calculating the
statutory reserve factors. If you don’t want to use those, set their table numbers to zero (which is the
default).

 CommFunc.LapseTableNum = 1235;

 CommFunc.XFactorTableNum = 1236;

After you have specified those inputs, the following values are available.

 CommFunc.Dx[age]

 CommFunc.Cx[age]

 CommFunc.Nx[age]

 CommFunc.Mx[age]

 CommFunc.Ax[age] Life insurance single premium factor

 CommFunc.Px[issueAge] Net annual premium factor

 CommFunc.CRVM_Px[issueAge] Net annual premium factor for issueAge + 1

 CommFunc.NLP_Reserve[issueAge, policyYear] Terminal NLP reserve

 CommFunc.CRVM_TerminalReserve[issueAge, policyYear] Terminal CRVM reserve

 CommFunc.CRVM_MonthlyReserve[issueAge, policyYear, policyMonth] Monthly CRVM reserve

The policyYear argument is numbered starting with the first policy year as 1. Policy year zero
corresponds to the moment before the first premium is paid.

The policyMonth argument is numbered from 1 through 12. Policy anniversaries are assumed to occur
at the end of the month, so policy month 12 means the policy anniversary at the end of the policy year,
when the monthly reserve is the same as the terminal reserve.

The code provided in the library calculates these factors on a semi-continuous basis. That means that
premiums are treated as paid annually and death benefits are treated as payable at the moment of
death (rather than the end of the policy year of death). The annual premium assumption is consistent
with US life insurance statutory accounting where premiums paid more frequently than annually are
treated as being due on an annual basis, with any portion yet to be paid later in the year recorded as a
receivable labeled “premiums due and accrued”.

 94

The class ContinuanceFunctions provides values defined by a continuance table and an interest rate.
This can be useful in computing claim reserves for disability insurance or long term care insurance.

To create an instance of this class you must call the constructor with arguments that specify the table
number of the continuance table and the interest rate to use for reserve calculations. For example:

 ContinuanceFactors ContFac = new ContinuanceFactors(1234, 0.04)

The specified table must be a continuance table of course.

Once constructed, the object provides the following methods:

• ContFac.RecoveryRate(incurralAge, durMonths);

Returns the fraction of claims that terminate (recover from disability) at the requested monthly duration
after claim.

• ContFac.ClaimRes(incurralAge, waitMonths, durMonths, benMonths);

Returns the month-end claim reserve per dollar of monthly benefits. The claim has a waiting period of
“waitMonths” and a benefit period of “benMonths”. The benefit period begins after the waiting period
and does not include it.

• double[] ClaimResVector(incurralAge, waitMonths, durMonths, benMonths);

Returns a vector of month-end claim reserve factors with a length equal to waitMonths + benMonths +
1. The last factor in the vector is for the month after the benefit period and is equal to zero.

The class AG38Calcculator carries out calculations according to Actuarial Guideline 38 for certain
kinds of universal life insurance contracts. To use it, first create an instance of the class:

 AG38Calculator AG38 = new AG38Calculator ();

Then specify the required inputs. Here is the list, with illustrative values shown:

 AG38.QxTableNum = 1234; Mortality table

 AG38.MinPremTableNum = 1235; Minimum premium rate table

 AG38.LapseTableNum = 1236; Lapse rate table

 AG38.XFactorTableNum = 1237; X-factor table

 AG38.IssueAge = 35;

 AG38.IntRate = 0.04;

 95

After the inputs have been specified, call the calculate() method:

 AG38.calculate();

 The following vectors of values are then available. The vectors contain one value per policy year. The
following are per dollar of face amount (not per $1000).

 double[] AG38.basicReserve;
 double[] AG38.basicNetPremium;
 double[] AG38.deficiencyReserve;
 double[] AG38.netSinglePremium;

The following vectors summarize the segmentation:

int[] AG38.segNums; Each policy year’s segment number
 double[] AG38.premRatios; Ratio of prem rate to first yr of segment

	1. Introduction: What is the Workbench?
	2. Background you should have
	2.1. Accounting
	2.1.1. The chart of accounts
	2.1.2. Double-entry accounting with debits and credits
	2.1.3. Non-cash accruals

	2.2. Basics of asset-liability modeling
	2.2.1. Invested asset background
	2.2.2. Liability product background
	2.2.3. Principle-based liability valuation

	2.3. Software background
	2.3.1. C# language and object-oriented design concepts
	2.3.1.1 Obect-oriented design concepts
	2.3.1.2 Advantages over C++ and Visual Basic

	2.3.2. Object-oriented implementation of a model
	ContractClass
	InvestmentClass
	InforceBlockClass
	InvPortfolioClass
	ControllerClass
	AsmpFileClass
	CashFlowClass
	InvStrategyClass
	LedgerClass
	ResultsDictionaryClass
	RunLog
	RunParmsClass
	ScenarioManagerClass
	TableManager

	3. How to use the Workbench
	3.1. The model development screens – the user interface
	3.2. Understanding file types
	3.3. Developing your first model
	3.4. Ideas and approaches for more complex models
	Adding formulaic liability calculations
	Separating results by year of issue
	Contract changes such as annuitization

	4. How to use models produced by the Workbench
	4.1 The top level user interface
	4.2 Files used by the model
	4.2.1 Input files
	4.2.2 Output files
	4.2.3 Table files
	4.2.4 Model support files

	4.3 Working with scenarios
	4.3.1 Defining risks
	4.3.2 Generating scenarios

	4.4 Running the asset / liability simulations
	4.5 Viewing the output

	5. Appendices
	Defining and using assumptions
	Actuarial tables and the Table Manager
	Chart of accounts and the ledger
	Report writer
	Risk definition files
	Principle-based valuation and the inner loop
	How the model controller handles inner loops
	Requesting that the inner loop be included in a model run
	Generating the inner loop scenario(s)
	Adding margins in the inner loop assumptions
	Capturing and using results of inner loop scenarios

	Principle-based margins and the Representative Scenarios Method (RSM)
	The source code generator
	Statutory reserves and BFReserveLib.dll

